- User Manual

EASY221-CO CANopen Slave Interface

04/04 AWB2528-1479GB

All brand and product names are trademarks or registered trademarks of the owner concerned.

1st published 2002, edition date 09/02 2nd edition 04/2004 See revision protocol in the "About this manual" chapter

© Moeller GmbH, 53105 Bonn

Author: Ronny Happ Editor: Michael Kämper Translator: Harold Schierbaum

All rights reserved, including those of the translation.

No part of this manual may be reproduced in any form (printed, photocopy, microfilm or any otherprocess) or processed, duplicated or distributed by means of electronic systems without written permission of Moeller GmbH, Bonn.

For Immediate Delivery call KMParts.com at (866) 595-9616

Warning! Dangerous electrical voltage!

Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit.
- Cover or enclose neighbouring units that are live.
- Follow the engineering instructions (AWA) of the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE) must be connected to the protective earth (PE) or to the potential equalisation. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference does not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.

- Suitable safety hardware and software measures should be implemented for the I/O interface so that a line or wire breakage on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the low voltage for the 24 volt supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD 384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause restart
- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed with the housing closed.
 Desktop or portable units must only be operated and controlled in enclosed housings.

ī

- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergencystop devices should be implemented.
- Wherever faults in the automation system may cause damage to persons or property, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).

Contents

	About This Manual	7
	List of revisions	7
	Target group	7
	Further manuals for this device	7
	References	8
	Data types	8
	Device designation	9
	Abbreviations and symbols	11
	Writing conventions	12
1	The EASY221-CO	13
	System overview	14
	Setup of the unit	15
	Device function description	16
	– easy600/700/800, MFD-CP8	16
	– easy800/MFD-CP8	17
	Hardware and operating system requirements	17
	Improper use	18
2	Installation	19
_	Connecting the EASY221-CO to the basic unit	19
	Connecting the power supply	20
	Connecting CANopen	21
	 Pin assignment of the CANopen 	21
	Bus terminating resistors	22
	EMC compliant wiring	22
	Electrical isolation	23
	Transfer rates – automatic baud rate recognition	24

3	Device Operation	25
	Initial power up	25
	Setting the CANopen slave address	26
	 Setting the address on the basic unit with display 	26
	 Setting the address by means of EASY-SOFT 	28
	 Setting the address via special 	
	configuration tools	28
	Status LEDs	29
	Error LED	29
	- RUN LED	30
	 Timing diagram of the ERR and RUN LEDs 	30
	Cycle time of the easy basic unit	31
	EDS file	31
4	CANopen Services	33
	Communication objects	33
	 Service data objects 	33
	 Process data objects 	34
	PDO mapping	36
	System services	37
	 Synchronisation object 	37
	 Time Stamp object 	37
	 Emergency object 	37
	Network management	38
	Initialisation	39
	Pre-operational	39
	Operational	39
	- Prepared	40
	 Node monitoring 	42
	Further services	43
	 Saving and restoring entries 	43
	 Layer Setting Service 	44
	Device profile	44

Contents

5	Object Dictionary	45
•	Communication parameters	45
	Manufacturer-specific objects	54
	Error messages (Emergency)	55
	Third data byte: coupling module status	57
6	CANopen Protocols	59
	PDO protocol	59
	SDO protocol	60
	 General overview 	60
	SDO protocol for easy/MFD	64
	 Example of easy600: Read time (7 bytes) 	67
	 Example of easy800: Read time (8 bytes) 	71
	Emergency protocol	75
7	PDO – Direct Data Exchange with easy/MFD	77
′	Output data (2011 _{hex}): operating mode, R1 – R16	
	Input data (2012 _{hex}): operating mode, S1 – S8	81
	input data (2012 _{hex}). Sperating mode, 31	01
8	SDO – Control Commands for easy600	85
	Date and time, Summer/winter time	87
	Reading image data	91
	 General notes on working with image data 	91
	Overview	91
	 Digital inputs, P and operating buttons 	92
	– Analog inputs: I7 – I8	95
	Timing relays, counter relays, time switches and	
	analog value comparators	96
	Markers, digital outputs and text display marke	
	Read/write function blocks	102
	- Overview	102
	 Analog value comparators A1 – A8: 	-\100
	write actual values (function, comparison value	-
	- Counter relays C1 - C8: read actual value	106
	Counter relays C1 – C8: write setpointCounter relays C1 – C8: read setpoint	108 110
	 Counter relays C1 – C8: read setpoint Timing relays T1 – T8: read actual value 	110
	(time base, actual value, switch function)112	
	(anic base, actual value, switch falletion) i iz	

	 Timing relays T1 – T8: write parameters 	
	(time base, setpoint, switch function)	116
	- Time switch ©1 - ©4: read actual values	
	(channel, ON time, OFF time)	120
	- Time switch 91 - 94: write setpoints	120
	(channel, ON time, OFF time)	124
	(channel, or time, or time)	127
9	SDO – Control Commands for easy700	129
	Read/write date and time	130
	Read/write image data	134
	Overview	134
	 Analog value comparators/threshold 	
	comparators: A1 – A16	135
	Counters: C1 – C16	136
	 Text function blocks: D1 – D16 	137
	Local inputs: I1 – I16	138
	 Local analog inputs: IA1 – IA4 	139
	– Markers: M1 – M16/N1 – N16	141
	– Markers: M1 – M16/N1 – N16	143
	 Operating hours counters: 01 – 04 	145
	Local P buttons: P1 – P4	146
	 Local outputs: Q1 – Q8 	148
	Inputs/outputs of EASY-LINK: R1 – R16/S1 – S8	149
	Timing relays: T1 – T16	151
	Year time switch: Y1 – Y8	152
	− Master reset: Z1 − Z3	153
	– 7-day time switch: 🗓 1 – 🗓 8	154
	Read/write function block data	155
	General notes	155
	Overview	155
	 Analog value comparator/threshold comparator: 	:
	A1 – A16	156
	 Counter relays: C1 – C16 	159
	 Operating hours counters: 01 – 04 	162
	– Timing relays: T1 – T16	164
	Year time switch: Y1 – Y8	167
	– 7-day time switch: ७1 – ७8	170
	Analysis - error codes via FASY-LINK	173

10	SDO – Control Commands for easy800/MFD175	
	Version history	176
	Read/write date and time	177
	Winter/summer time, DST	178
	Read/write image data	182
	- Overview	182
	 Local analog inputs: IA1 – IA4 	183
	– Local diagnostics: ID1 – ID16	185
	– Local inputs: IW0	187
	 Inputs of the stations: IW1 to IW8 	189
	– Markers: M	190
	 Local P buttons: P1 – P4 	193
	 Local analog output: QA1 	195
	– Local outputs: QW0/	
	outputs of the stations QW1 – QW8	196
	 Inputs/outputs of EASY-LINK: RW/SW 	198
	Receive Data Network: RN1 – RN32/	
	Transmit Data Network: SN1 – SN32	200
	Read/write function block data	202
	General notes	202
	– Overview	203
	 Analog value comparators: A01 – A32 	204
	Arithmetic function block: AR01 – AR32	206
	Block compare: BC01 – BC32	208
	Block transfer: BT01 – BT32	210
	Boolean operation: BV01 – BV32	212
	Counters: C01 – C32	214
	 Frequency counters: CF01 – CF04 	216
	 High-speed counters: CH01 – CH04 	218
	Incremental counters: CI01 – CI02	220
	Comparators: CP01 – CP32	222
	 Text output function blocks: D01 – D32 	224
	 Data function blocks: DB01 – DB32 	227
	PID controllers: DC01 – DC32	229
	 Signal smoothing filters: FT01 – FT32 	232
	 Receive network data: GT01 – GT32 	234
	7-day time switches: HW01 – HW32	236
	Year time switches: HY01 – HY32	239
	Value scaling: LS01 – LS32	242

	– Master reset: MR01 – MR32	244
	 Numerical converters : NC01 – NC32 	246
	 Operating hours counters: OT01 – OT04 	248
	– Transmit network data: PT01 – PT32	250
	 Pulse width modulation: PW01 – PW02 	252
	Synchronize clock: SC01	254
	– Set cycle time: ST01	255
	- Timing relays: T01 – T32	257
	– Value limitation: VC01 – VC32	260
	Analysis – error codes via EASY-LINK	262
	•	
11	What happens if?	265
	RUN LED	265
	Error LED	266
	Ammay	267
	Annex	267
	Technical Data	267
	Dimensions	270
	Glossary	271
	•	
	Index	283

About This Manual

List of revisions The following essential changes have been mad previous version:		ade since the			
Edition date	Page	Description	New	Modification	Removed
04/04	gen.	easy700/800/MFD	√		
	60	SDO protocol		√	

Target group

This manual has been produced for automation technicians and engineers. A thorough knowledge of the CANopen fieldbus and the programming of a CANopen master is required. You should also be familiar with the operation of the easy control relay or the MFD multi-function display.

Further manuals for this device

The following operating manuals should be followed:

- easy412 control relay, easy600 (AWB2528-1304-GB)
- easy700 control relay, (AWB2528-1508-GB)
- easy800 control relay, (AWB2528-1423-GB)
- MFD-Titan multi-function display (AWB2528-1480-GB)

All manuals are available on the Internet for download as PDF files. For a fast search enter the documentation number as the search criterion at http://www.moeller.net/support:

References	[1] CANopen — Application Layer and Communication Profile CiA Draft Standard DS301 Version 4.01 June 1, 2000
	[2] CANopen – Cabling and Connector Pin Assignment CiA Draft Recommendation DR303-1 Version 1.0 October 10, 1999
	[3] CANopen — Indicator Specification CiA Draft Recommendation Proposal DRP303-3 Version 0.2 February, 22, 2001
	[4] CANopen – Layer Setting Services and Protocol (LSS) CiA Draft Standard Proposal DSP305 Version 1.0 May 31, 2000

Data types

The CANopen specifies its own data types in [1] chapter 9.1 and 9.5.3. The data types listed in the following table are used for the CANopen protocol handler of the EASY221-CO.

Name	Description	Range	
		Minimum	Maximum
UNSIGNED8	8-bit unsigned integer (b7 to b0)	0	255
UNSIGNED16	16-bit unsigned integer (b15 to b0)	0	65535
UNSIGNED32	32-bit unsigned integer (b31 to b0)	0	4294967295
VISIBLE_STRINGlen	Character string of the length len. The character string does not have to be delimited with 0 _{hex} !	All ASCII characto 7E _{hex} and 0 _h permissible	TICK
DOMAIN	User-specific data format		

Device designation

This manual uses the following short names for equipment types, as far as the description applies to all of these types:

- easy412 for EASY412-..-... devices
- EASY512-..-.., EASY7..-..-...

Type designation of the control relay, the point represents a placeholder for all characters used

- easy500 for
 - EASY512-AB...
 - EASY512-AC
 - EASY521-DA...
 - EASY512-DC
- easy600 for
 - EASY6..-AC-RC(X)
 - EASY6..-DC.-.C(X)
- easy700 for
 - FASY719-AB...
 - EASY719-AC...
 - FASY719-DA…
 - EASY719-DC...
 - EASY721-DC...
- easy800 for
 - FASY819-...
 - EASY820-...
 - EASY821-...
 - FASY822-...
- MFD-CP8.. for
 - MFD-CP8-ME
 - MFD-CP8-NT

- easy-AB for
 - EASY512-AB...
 - EASY719-AB...
- · easy-AC for
 - EASY412-AC-..
 - EASY512-AC-...
 - EASY6..-AC-RC(X),
 - EASY719AC
 - EASY8..-AC-...
- easy-DC for
 - EASY412-DC-..
 - EASY512-DC-..
 - EASY6..-DC-...
 - EASY719-DC-...
 - EASY8..-.DC-...
- easy-DA for
 - EASY412-DA...
 - EASY512-DA...
 - EASY719-DA...

Abbreviations and symbols

Meaning of abbreviations and symbols used in this manual:

BCD	Binary Coded Decimal code		
CAL	CAN Application Layer		
CAN	Controller Area Network		
СОВ	Communication Ob ject		
COB ID	Communication Object Identifier		
COV	Change of Value		
DEC	Decimal (number system with base 10)		
EDS	Electronic Data Sheets		
EMCY	Emergency Object		
HEX	Hexadecimal (number system with base 16)		
ID	Id entifier		
LSS	Layer Setting Service		
NMT	Network Management		
NVM	Non-Volatile Memory		
NVM-PA	Non-Volatile Memory Parameter (load and save area)		
NVM-RO	Non-Volatile Memory-Read Only (read-only memory area)		
PC	Personal Computer		
PDO	Process Data Object		
ro	Read Only (read access only)		
ROM	Read Only Memory		
RTR	Remote Transmit Request		
rw	Read/Write (read/write access)		
SELV	Safety Extra Low Voltage		
SDO	Service Data Object		
FS	Factory Setting		

Writing conventions

Except for the first page of chapters and empty pages at the end, the top left of the page shows the chapter title and the top right of the page shows the current section for greater clarity.

▶ indicates actions to be taken.

Attention!

Warns of a hazardous situation that could result in damage to the product or components.

Caution!

Warns of the possibility of serious damage and slight injury.

Warning

Warns of the possibility of a hazardous situation that could result in major damage and serious or fatal injury or even death.

Indicates interesting tips and additional information

1 The EASY221-CO

The EASY221-CO communication module was developed for automation tasks that use the CANopen fieldbus. The EASY221-CO is a gateway and can only be used in conjunction with the easy600, easy700, easy800 or MFD basic units. The system unit, consisting of the easy/MFD control unit and the CANopen gateway functions in the fieldbus system exclusively as a a slave station.

System overview

The easy CANopen slaves are integrated into a CANopen.

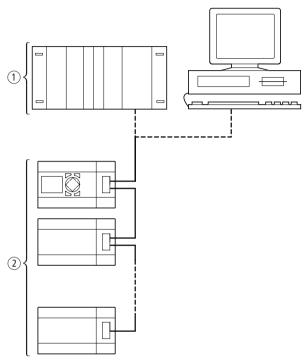


Figure 1: Integration of EASY221-CO in the CANopen network

- 1) Master area, PLC (e.g.: XC600) or PC with CAN card
- $\ensuremath{ \ 2 \ }$ Slave area, e.g.: easy control relay with CANopen gateway

Setup of the unit

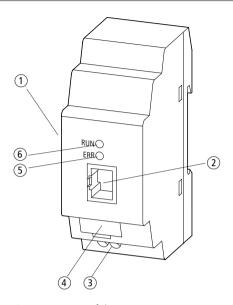


Figure 2: Setup of the EASY221-CO

- (1) EASY-LINK socket
- (2) CANopen terminal, 8-pin RJ45 socket
- 3 Power supply 24 V
- (4) Device designation plate
- (5) ERR LED (Error)
- 6 RUN LED

Device function description

The EASY221-CO module allows the easy and MFD series devices to be connected to a CANopen communication network. The following data can be transferred by selecting the appropriate SDO/PDO:

easy600/700/800, MFD-CP8..

- S1 to S8
 Output data of the basic unit, RUN/STOP (read, as viewed from CANopen master)
- R1 to R16
 Input data of the basic unit, RUN/STOP (write, as viewed from CANopen master)
- All function relay data (read, as viewed from the CANopen master)
 - Timing relays
 - Counter relays
 - Time switches
 - Analog comparators
 - Weekday, time, summer/winter time (DST)
 - All states of the easy600 contacts.
- The setpoints of the function relays (write, as viewed from CANopen master)
 - Timing relays
 - Counter relays
 - Time switches
 - Analog comparators
 - Weekday, time, summer/winter time (DST)

easy800/MFD-CP8..

- All markers and easyNet data
- Function blocks (read/write, as viewed from the master)
 - Arithmetic function blocks
 - Frequency counters, high-speed counters, incremental encoder counters
 - 7-day and year time switch
 - Operating hours counters
 - PID controllers
 - PWM (pulse width modulation)
 - Real-time clock

Hardware and operating system requirements

The EASY221-CO expansion device operates with the easy600, easy700, easy800 and MFD basic units from the following operating system versions:

Basic unit		EASY221-CO expansion device		
Device version	OS version	Device version = 02	Device version = 03	
easy600				
= 04	From 2.4	×	×	
easy700				
= 01	From 1.01.xxx	-	×	
easy800				
= 04	From 1.10.xxx	-	×	
MFD-CP8				
= 01	From 1.10.xxx	-	×	

The device version of the appropriate basic unit or expansion device is specified on the right of the housing. Example: EASY221-CO: 03-228xxxxxxx (03 = device version)

The operating system version (OS) of the corresponding basic unit can be read using EASY-SOFT. With easy700, easy800 and MFD-CP8.. devices it is also possible to read out the information directly from the device. Read the appropriate manual for further information for this.

An overview of the modifications and new features of the different easy800 device versions is provided on Page 176.

Improper use

easy may not be used to replace safety-relevant control circuits, e.g.:

- Burner,
- Emergency-stop,
- Crane or
- Two-hand safety controls.

2 Installation

The same principles apply as for easy600, easy700, easy800 and MFD basic units with expansion devices.

Connecting the EASY221-CO to the basic unit

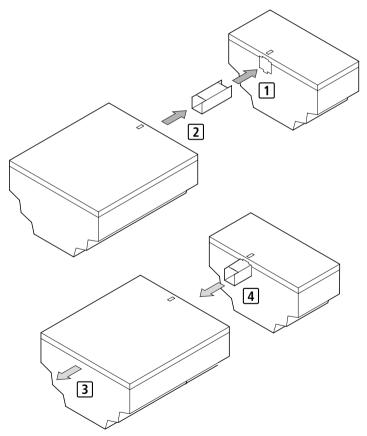


Figure 3: Fitting the EASY221-CO to the basic unit

- 1 + 2 Fitting
- 3 + 4 Removal

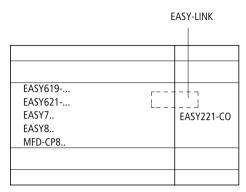


Figure 4: Connection between the basic unit and EASY221-CO

Connecting the power supply

The EASY221-CO device is run on a 24 V DC power supply (→ Technical data under "Power supply", page 269).

Warning

Always ensure electrical safety isolation between the extra low voltage (SELV) and the 24 V power supply.

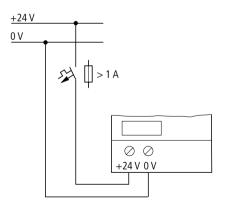


Figure 5: Power supply of the EASY221-CO

Connecting CANopen

The cable types, coupling connectors and terminating resistors to be used are specified in ISO 11898.

A shielded 8-pin RJ45 plug is used to connect the EASY221-CO. The pin assignment of the plug is specified below in accordance with CiA DR-303-1.

Pin assignment of the CANopen

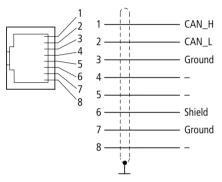


Figure 6: Pin assignment of the device socket

Pin	Signal	Description
1	CAN_H	CAN bus signal (dominant high)
2	CAN_L	CAN bus signal (dominant low)
3, 7	CAN_GND	CAN ground
6	CAN_SHILD	Optional shielding
4, 5, 8	_	n.c.

Bus terminating resistors

The first and last node of a CANopen network must be terminated by means of a 120 Ω bus terminating resistor. This is interconnected between the CAN_H and CAN_L terminals.

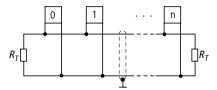


Figure 7: Terminating resistors R_T : CAN_H and CAN_L terminals $R_T = 120 \Omega$

EMC compliant wiring

Electromagnetic interference may lead to unwanted effects on the communication fieldbus. Such effects can be significantly reduced by using the cable described above, a shielded RJ45 connector and by terminating the shield.

The two figures below show the correct termination of the shielding.

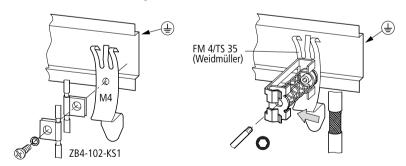


Figure 8: Shielding connection to the mounting rail

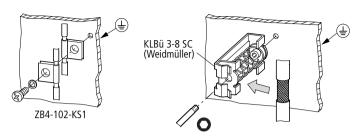


Figure 9: Shielding connection to the mounting plate

Electrical isolation

The following potential isolation must be provided for the interfaces of the EASY221-CO:

Figure 10: Potential isolation between the power supply and outputs

- (1) Safe electrical isolation between EASY-LINK and 240 VAC
- (2) Basic electrical isolation to the CANopen communication bus
- (3) Power supply 24 V DC

Transfer rates – automatic baud rate recognition

After it is switched on, the EASY221-CO module automatically detects the data transfer rate of the communication network. However, this requires that at least one station is transmitting valid telegrams in the network. The fast flashing Error and RUN LEDs of the EASY221-CO indicate this status.

After a correct CANopen message frame has been received, the used and thus set baud rate is considered correct and the device transmits a BootUp message frame. The RUN LED starts flashing and the ERR LED will be switched off.

The EASY221-CO supports the data transfer rates specified by CiA. The table below provides an overview of recommended bit rates and of the corresponding maximum cable lengths.

Bit rate	Max. cable length	Recommended conductor cross-section
kbps	m	mm ²
10	5000	> 0.8
20	2500	> 0.8
50	1000	0.75 to 0.8
100	650	0.34 to 0.6
125	500	0.34 to 0.6
250	250	0.34 to 0.6
500	100	0.25 to 0.34
800	50	0.25 to 0.34
1000	25	0.25 to 0.34

3 Device Operation

Initial power up

- ➤ Before you switch on the device, verify that it is properly connected to the power supply, to the bus connector and to the basic unit.
- ► Switch on the power supply to the basic unit and the EASY221-CO.

The LEDs of the EASY221-CO will flicker. The device is in the mode for determining the correct baud rate (→ section "Transfer rates – automatic baud rate recognition" on page 24). The GW message (intelligent station connected) must be displayed on the basic unit.

Basic unit	Device version	GW display
easy600	04	Static
easy700	From 01	Flashing
easy800	04	Static
	From 05	Flashing
MFD-CP8	01	Static
	From 02	Flashing

As soon as the device is switched to Operational status, the GW message is static in the display, even on the devices with a flashing GW, -> section "Network management" on page 38).

If the EASY221-CO has its default settings (node ID = 127), you need to define the CANopen slave address.

Setting the CANopen slave address

Each CANopen slave must be assigned a unique address (node ID) within the CANopen structure. You can assign a maximum of 127 addresses (1 to 127) within a CANopen structure. All node IDs must be unique within the entire bus structure.

There are three ways to set the CANopen address of an EASY221-CO:

- Using the integrated display and keypad on the easy or MFD-Titan basic unit; address range: 1 to 127
- Using EASY-SOFT V3.01 or higher on the PC
- Via the configuration software of the master PLC used (possibly by means of an explicit message).

Setting the address on the basic unit with display

Requirements:

- The appropriate basic unit (easy600, easy700, easy800 or MFD-Titan) and EASY221-CO must be fed with power.
- The basic unit must have been unlocked (no password activated).
- The basic unit must have a valid operating system version.
- The basic unit must be in STOP mode.

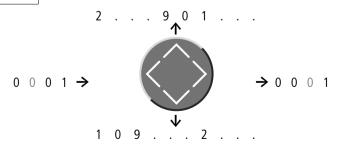
▶ Press the DEL + ALT buttons to change to the special menu. PASSWORD... SYSTEM... GB D F E I CONFIGURATOR

PASSWORD... SYSTEM... GB D F E I CONFIGURATOR ▶ Use the cursor buttons \land or \lor to change to CONFIGURATOR.

► Confirm with OK.

▶ With easy800/MFD devices select LINK...

► Confirm with OK.

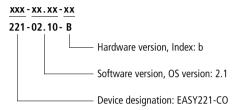

The CANOPEN menu appears.

CANOPEN _

► Set the address with the cursor buttons:

CANOPEN (MAX 121) NODE ID 0121 221 -01.20- B

- Set the current numeric value with the \wedge or \vee buttons.
- You can change the actual numeric value via the < or > buttons.



▶ Press OK to accept the address.

▶ Press ESC to cancel address entry.

Information on the 4th display line:

Setting the address by means of EASY-SOFT

With EASY-SOFT, version 3.1

«Menu Online Configure Expansion Devices»

With EASY-SOFT, from version 4.01

⟨Menu → Communication → Configuration → ExpansionDevices → EASY221-CO⟩.

The menu is only available in Communication View, therefore activate the Communication tab.

The following applies to devices for device version 01:

After you have changed the NodelD via the basic unit you must restart EASY221-CO by switching power off and on. EASY221-CO devices with a version number > 01 accept the address automatically.

Setting the address via special configuration tools

A further option of setting or modifying the node ID of the gateway is provided by special configuration tools, which can be used for general configuration of the CANopen network. The gateway supports the LSS (Layer Setting Services) service accordingly.

Status LEDs

The EASY221-CO expansion unit is equipped with two LEDs: one green RUN LED and one red ERR LED. These indicate the current module status and allow quick error analysis.

Error LED

No.	Error LED	Status	Description
1	OFF	No error	The EASY221-CO is operating error-free. If the RUN LED is also off, the EASY221-CO is either switched off or is currently being reset.
2	Single flash	Alarm limit reached	At least one of the error counters of the CANopen Controller has either reached or exceeded the Warning Limit. Too many errors have occurred on the CANopen bus.
3	Flickering	AutoBaud/LSS	Auto baud rate detection is currently busy (flickers in alternation with the RUN LED).
4	Flashes twice	Error control event	A protective Guard Event or a Heartbeat Event has occurred.
5	ON	Bus-off	The CANopen controller has changed to BUS-OFF status.

RUN LED

No.	RUN LED	Status	Description
1	OFF	Reset	The EASY221-CO is either switched off or is currently being reset.
2	Flickering	AutoBaud	Auto baud recognition is currently busy (LED flickers, in alternation with the ERR LED).
3	Single flash	STOPPED ¹⁾	The device is in STOPPED state.
4	Flashing	PRE-OPERATIONAL ¹⁾	The device is in PRE-OPERATIONAL status.
5	ON	OPERATIONAL ¹⁾	The device is in OPERATIONAL status.

¹⁾ Detailed information on the various states is provided in section "Network management", page 38.

Timing diagram of the ERR and RUN LEDs

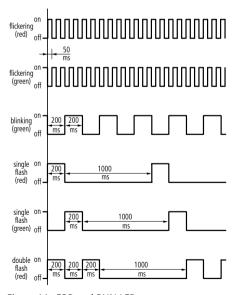


Figure 11: ERR and RUN LED

Cycle time of the easy basic unit

Communication between the basic unit and the EASY221-CO via EASY-LINK increases the cycle time of the basic unit

The worst case value is 25 ms.

Please take this factor into account when calculating response times of the basic unit.

EDS file

You can implement the EASY221-CO into the CANopen structure by means of a standardised EDS file (Electronic Data Sheet). The EDS defines the CANopen functions in machine code. It lists all objects, supported data transfer rates, the manufacturer and many other data.

You can either order the current version of the EDS file directly at Moeller or download updates from the Moeller homepage:

 $\underline{\text{http://easy.moeller.net}} \longrightarrow \text{Download} \longrightarrow$

Follow the link on this page.

4 CANopen Services

The functions for controlling the EASY221-CO on the CANopen bus are defined by the CANopen services.

Communication objects

The EASY221-CO supports service data objects (SDOs) and process data objects (PDOs) of the CANopen Predefined Connection Set.

Service data objects

Service data objects (SDO – Service Data Object) are used for read/write access to the entries of the object dictionary.

Server SDO

The system supports the first server SDO, which allows read/write access to the local object dictionary.

The EASY221-CO supports expedited transfer (of up to four data bytes) and segmented transfer (for more than four data bytes).

Block transfer is not supported!

More detailed information on the sequence is provided in section "PDO protocol", page 59.

Client SDO

Client SDOs provide remote read/write access to the object dictionaries of CANopen devices on the network.

The EASY221-CO does not support client SDOs.

Process data objects

Process data is exchanged in the CANopen by means of PDOs (= Process Data Object). More detailed information on the sequence is provided in section "Manufacturer-specific objects", page 54.

The table below lists the process data and the corresponding PDOs.

PDO	Process data	Length
Receive PDO	Command or identification for the image data R16 to R1 of easy/MFD basic unit (output data to easy)	3 bytes
Transmit PDO	Command or status for the image data S8 to S1 of easy/MFD basic unit (input data from easy)	3 bytes

For details on the structure of process data refer to section "Manufacturer-specific objects", page 54.

Receive PDO

The EASY221-CO receives data from the CANopen network (PDO consumer) by means of receive PDOs and writes this data via EASY-LINK to the easy/MFD basic unit as a command or identifier for the image data R16 to R1.

Transmit PDOs

In the opposite direction, the commands or status of the S8 to S1 image data of easy600 are read via EASY-LINK and transmitted to the CANopen network as transmit PDOs of the EASY221-CO (PDO producer).

PDO mapping

The EASY221-CO supports **static PDO mapping**. The process data is here permanently assigned to the specific PDOs, with a granularity of 1 byte. The PDO mapping is permanently stored and cannot be modified by the user.

Transmission types of PDOs

Receive PDO:

The default transmission type setting for receive PDOs is "asynchronous" (Value: $255_{dec} = FF_{hex}$).

Transmit PDO:

The default transmission type setting for transmit PDOs is

"asynchronous" (Value: $255_{dec} = FF_{hex}$).

Inhibit Time

The Inhibit Time is evaluated only for transmit PDOs. This time represents the data transfer inhibit time between two transmit PDOs, specified in steps of 100 μ s. The passed value is rounded to the next lower millisecond. Values lower than 1 ms are stored as "0". In this case the module transfers the PDOs at maximum speed.

An Inhibit Time is not set by default, since data transferred via the EASY-LINK protocol is updated only at 180 ms intervals. However, the user can set an Inhibit Time definition for the transmit PDO as required.

Event Timed PDOs

The expiration of a counter can be considered as an event which triggers the transmission of a PDO. The EASY221-CO does not support Event Timed PDOs by default, however the user can enable this function for transmit PDOs as required.

Multiplexed PDOs

In addition to elementary process data, the multiplexed PDOs also contain address information consisting of an index and a subindex used for writing the PDO to a specific address in the object dictionary of the consumer device.

The EASY221-CO does not support multiplexed PDOs.

PDO mapping

Process data is mapped to a receive and transmit PDO as follows.

Receive PDO 1:

The table below shows the mapping of the first receive PDO.

Data byte	Contents	Description
Data byte 1	Cyclic command and identifier	Write input data of the easy/MFD
Data byte 2	Image data R16 to R9	basic unit (from the point of view of the master)
Data byte 3	Image data R8 to R1	(index 2011, subindex 00_{hex})
Data bytes 4 to 8	Not transferred	

For details on the composition of the process data refer to section "Output data (2011_{hex}): operating mode, R1 – R16", page 78.

Receive PDO 2 to 4:

These receive PDOs of the Predefined Connection Set are not supported.

Transmit PDO 1:

The table below shows the mapping of the first transmit PDO.

Data byte	Contents	Description
Data byte 1	Cyclic command and status	Read output data of the easy/MFD
Data byte 2	Image data S8 to S1	basic unit (from the point of view of the master)
Data byte 3	empty (00 _{hex})	(index 2012 _{hex} , subindex 00 _{hex})
Data byte 4 to 8	Not transferred	

For details on the composition of the process data refer to section "Input data (2012_{hex}): operating mode, S1 - S8", page 81.

Transmit PDO 2 to 4:

These transmit PDOs of the Predefined Connection Set are not supported.

System services

Synchronisation object

The EASY221-CO as consumer supports the synchronisation object (index: 1005_{hex}) in order to enable the synchronous transfer of PDOs.

Time Stamp object

A time producer uses the time stamp object (Index: 1012_{hex}) to provide a common time reference to all system nodes. The EASY221-CO does not support the Time Stamp object.

Emergency object

The EASY221-CO supports the emergency object (index: 1014_{hex}) in order to report device errors to the network. The content of this emergency message is determined by the error event. Errors detected are described under section "Error messages (Emergency)", page 55.

Network management

A CANopen network contains only one NMT master (NMT = Network Management), while all other devices are NMT slaves. The NMT master has full control over all units and can thus change their status.

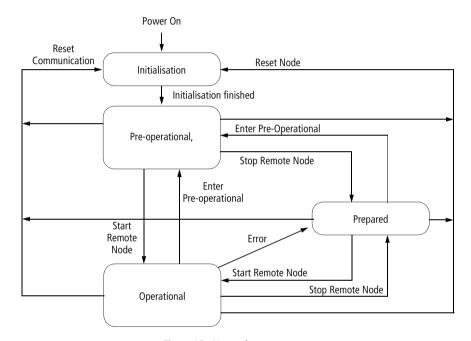


Figure 12: Network management

CANopen distinguishes between the following states:

- Initialisation,
- Pre-operational,
- Operational and
- Prepared

Initialisation

This is the status of a node after power on. Auto baud recognition, initialisation of device applications and communication take place within this phase. The node automatically enters the next state, namely the Preoperational state.

Pre-operational

In this mode it is possible to communicate with the node via SDOs (e.g setting the Guard Time, Lifetime Factor). The node is not able to execute PDO communication and does not transmit any emergency messages.

The RUN LED of the EASY221-CO flashes to indicate this state.

From device version 03 the state is indicated also on the basic unit with the flashing GW message in the easy display. The diagnostics input I14 (on the basic unit) is set until GW is no longer flashing in the easy display. This is achieved by setting the CAN node to Operational mode.

Operational

In this state, the CANopen node is fully ready for operation and can automatically transmit messages (PDOs, Emergency).

The RUN LED of the EASY221-CO is static to indicate this state.

From device version 03 the status is indicated also on the basic unit by the static display of the GW status message. The diagnostics input 114 (on the basic unit) is set to zero.

Prepared

In this state, the node connection is switched completely to bus-off state; neither SDO nor PDO communication are possible. The network status of a node can be changed only by means of an appropriate network command (e.g. the Start Remote Node service).

A Boot-Up message will be transmitted after power on of a device in order to indicate its ready state. This message frame uses the identifier of the NMT error control protocol and is permanently assigned to the set device address (1792_{dec} + device address).

For information on the PDO and SDO transfer refer also to section "PDO protocol", on page 59.

Process data exchange by means of PDOs is enabled by setting the module to OPERATIONAL state via the Start Remote Node service. TxPDOs configured with transmission types 254 or 255 will be transmitted at each transition to OPERATIONAL state, irrespective of any changes in input data.

The module enters the PREPARED state after an error has occurred. Communication via SDOs and PDOs is then no longer possible and the module only responds to the NMT services:

- Start Remote Node, transition to OPERATIONAL state; making it possible to transfer data via SDOs and PDOs.
- Enter Pre-operational, transition to PRE-OPERATIONAL state; it is possible to transfer data via SDOs.
- Reset Node and
- Reset Communication, transition to INITIALISATION state, i.e. the last settings will be loaded from memory, or the factory settings if nothing has been saved previously. The module then enters PRE-OPERATIONAL state.

Structure of the NMT services:

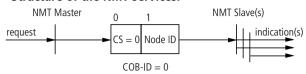


Figure 13: Structure of the NMT services, Start Remote Node Node ID = 0: Sets all existing nodes to OPERATIONAL state.

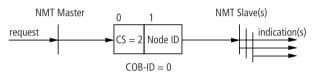


Figure 14: Structure of the NMT services, Stop Remote Node Node ID = 0: Sets all existing nodes to PREPARED state.

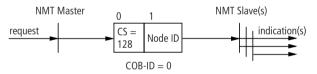


Figure 15: Structure of NMT services, PRE-OPERATIONAL state
Node ID = 0: Sets all existing nodes to PRE-OPERATIONAL state.

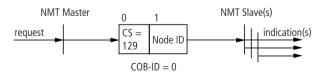


Figure 16: Structure of NMT services, Reset Node Node ID = 0: Resets all existing nodes.

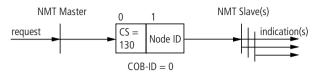


Figure 17: Structure of NMT services, Reset Communication Node ID = 0: Resets all existing nodes.

Node monitoring

A CANopen node must be checked in particular if it does not continuously transmit messages (cyclic PDOs). Two methods can be used alternatively to monitor CANopen nodes.

EASY221-CO supports Node Guarding and Heartbeat Producer modes for node monitoring.

Node Guarding

The NMT master polls all NMT slaves at specified intervals (Node Guard Time) by means of a node-specific Remote Transmission Request message frame (RTR). The NMT slave responds to this request by transmitting its communication status. The NMT master reports a Node Guarding Event to its application if a node fails to respond to the RTR within the specific Node Life Time.

Failure of Node Guarding

Error events triggered after the Life Time has expired and a Node Guard frame has not been received from the FASY221-CO will be treated as communication error.

The R data for the easy basic unit will be set to zero in this case. The ERR LED flashes twice to indicate Guarding failure.

When the Node Guarding protocol is resumed, the ERR LED will be switched off immediately and the outputs of the easy basic unit can now receive PDO data again.

Heartbeat Producer

The EASY221-CO broadcasts a cyclic heartbeat frame to signal its communication status. If a responsible heartbeat consumer does not receive this heartbeat frame within the Heartbeat Consuming Time, its application will report a heartbeat error. The second parameter relevant to the heartbeat protocol is the Heartbeat Producer Time, which can be set in the EASY221-CO gateway. This time determines the interval between the transfer of two heartbeat frames by the node.

When the Heartbeat Producer Time is set to a value unequal to zero on the EASY221-CO node, the first heartbeat frame will be transmitted during the transition from the Initialisation to the Pre-operational state. Concurrent use of both node monitoring methods is not allowed. The heartbeat protocol is used when the Heartbeat Producer Time is unequal to zero.

The EASY221-CO does not support the Heartbeat Consumer mode for receiving heartbeat frames of other CANopen devices.

Further services

Saving and restoring entries

The EASY221-CO supports the saving and restoring of the object dictionary entries $10\,00_{hex}$ to $1FFF_{hex}$ in the non-volatile memory (EEPROM or FRAM). In the object dictionary tables, this area is named NVM-PA, while manufacturer-specific entries are stored in the NVM-RO area.

Parameters are saved via the object 1010_{hex} (SAVE signature); this always includes all parameters.

The factory settings (FS) in the area 1000_{hex} to $1FFF_{hex}$ can be restored with the object 1011_{hex} (LOAD signature). This routine always restores all factory settings.

Layer Setting Service

The Layer Setting Service is used to configure the node ID via the CANopen network. The EASY221-CO supports this service for both of the specified slave modes Switch Mode Global and Switch Mode Selective.

Changes of the node ID will become directly effective on the EASY221-CO. To ensure that the correct node ID is displayed on the easy basic unit as well (Configurator menu), you must switch on the coupling module again.

Device profile

In the extension of the CiA-DS-301 communication profile which describes the communication mechanisms between nodes, the CANopen uses so-called device profiles for the essential device classes. The device profiles describe the device functions. The EASY221-CO cannot be assigned to an existing device profile.

5 Object Dictionary

The object dictionary of the EASY221-CO contains the entries described below.

Communication parameters

A detailed description of the communication parameters is provided in the CiA specification [1] Section 9.6.3.

The objects 1000_{hex} , 1001_{hex} and 1018_{hex} are required for all CANopen devices. All other objects are optional; the table below shows which of these are supported by the EASY221-CO.

The table below lists the object dictionary entries 1000_{hex} to 1018_{hex} .

Index	Sub- index	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1000	00	Device Type	UNSIGNED32	ro ROM	00000000	CANopen device without device profile
1001	00	Error Register	UNSIGNED8	ro RAM		Error indication: 00 _{hex} no error
1003	00	Pre- defined Error Field	UNSIGNED8	rw RAM	00	Error history
	01 to 10 ¹⁾	Default Error Field	UNSIGNED32	ro RAM		Error description (→[1] Page 9-65)
1005	00	COB-ID SYNC Message	UNSIGNED32	rw NVM-PA	00000080	COB-ID of the SYNC object, device consumes the SYNC message

Index	Sub- index	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1008	00	Manufact urer Device Name	VISIBLE_STRING ²⁾	ro NVM-RO	454153 593232 312D43 4F	Device name of the module (EASY221-CO)
1009	00	Manufact urer Hardware Version	VISIBLE_STRING8	ro NVM-RO	0001.000 (Example)	Hardware version of the module
A 100	00	Manufact urer Software Version	VISIBLE_STRING8	ro NVM-RO	0001.001 (Example)	Software version of the module
C 100	00	Guard Time	UNSIGNED16	rw NVM-PA	00 00 _{hex} Resolution in 1 ms	Guard Time in milliseconds
100D	00	Life Time Factor	UNSIGNED8	rw NVM-PA	00 _{hex}	Multiplier for the Guard Time, the result is equivalent to the maximum interval between the transfer of two Guarding message frames
1010	00	Store Parameter s	UNSIGNED8	ro ROM	01	Max. number of storing options
	01	SAVE all Parameter s	UNSIGNED32	rw RAM	wr: 65766173 rd: 00000001	→[1] Page 9-70

Index	Sub- index	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1011	00	Restore default Parameter s	UNSIGNED8	ro ROM	01	Loads the default parameters
	01	LOAD all Parameter s	UNSIGNED32	rw RAM	wr: 64616F6C rd: 00000001	The device restores factory set parameters. These parameters are retained until the next power on event (→ [1] Page 9-72)
1014	00	COB-ID EMCY Message	UNSIGNED32	ro ROM	00000080 + node ID	CAN identifier of the emergency message
1015	00	Inhibit Time EMCY	UNSIGNED16	rw NVM-PA	0000 Resolution in 100 μs	Time interval between the transmission of two EMCY messages
1017	00	Producer Heartbeat Time	UNSIGNED16	rw NVM-PA	0000 Resolution in 1 ms	Time interval between the transmission of two heartbeat messages

Index	Sub- index	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1018	00	Identity Object	UNSIGNED8	ro NVM-RO	04	General device information
	01	Vendor ID	UNSIGNED32	ro NVM-RO	00000003	Manufacturer
	02	Product Code	UNSIGNED32	ro NVM-RO	0323353	Product number
	03	Revision Number	UNSIGNED32	ro NVM-RO	00 01 00 01 (Example)	Version
	04	Serial Number	UNSIGNED32	ro NVM-RO	4010016 (Example)	Serial number

¹⁾ The EASY221-CO supports up to 16 entries in the error log.

²⁾ The maximum string length is 31 characters, including the delimiter "0".

The EASY221-CO supports the first server SDO of the Predefined Connection Set. The table below shows the object dictionary entry 1200_{hex}: Server SDO parameters of the first server SDO.

Index	Sub- index	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1200	00	Server SDO Parameter	UNSIGNED8	ro ROM	02	Number of valid subindexes
	01	COB-ID Client → Server (rx)	UNSIGNED32	ro ROM	00 00 06 00 + node ID	COB-ID of the RxSDO. The ID is derived from the Predefined Connection Set.
	02	COB-ID Server→ Client (tx)	UNSIGNED32	ro ROM	00 00 05 80 + node ID	COB-ID of the TxSDO. The ID is derived from the Predefined Connection Set.

The EASY221-CO supports the first receive SDO of the Predefined Connection Set. The receive PDOs 2 to 4 are not supported. The table below shows the object dictionary entry 1400_{hex}: Communication parameters of the first receive PDO.

Index	Subin dex	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1400	00	Receive PDO Parameter	UNSIGNED8	ro NVM-PA	02	Communication parameter of the first RxPDO, number of valid subindexes
	01	COB-ID	UNSIGNED32	rw NVM-PA	00000200 + node ID	COB ID of the first Rx PDO, according to [1]
	02	Transmissi on Type	UNSIGNED8	rw NVM-PA	FF	PDO transmission type: asynchronous

With the first receive PDO, the output data is stored in the object dictionary (index $20\,11_{hex}$, subindex 00_{hex}) and is transferred by means of a standard protocol to the basic unit via EASY-LINK. The table below shows the object dictionary entry $16\,00_{hex}$: Mapping parameters of the first receive PDO.

Index	Subin dex	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1600	00	Receive PDO Mapping	UNSIGNED8	ro ROM	01	Mapping parameters of the first Rx PDO, number of valid subindexes
	01	Mapped Object 1	UNSIGNED32	ro ROM	2011001	Index 2011 _{hex} , subindex 00 _{hex} , length = 24 bits

The EASY221-CO supports the first Transmit PDO of the Predefined Connection Set. The transmit PDOs 2 to 4 are not supported. The table below shows the object dictionary entries 1800_{hex}: Communication parameters of the first Transmit PDO.

Index	Subin dex	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1800	00	Transmit PDO Parameter	UNSIGNED8	ro NVM-PA	05	Communication parameters of the first TxPDO. Number of valid subindexes
	01	COB-ID	UNSIGNED32	rw NVM-PA	00000180 + node ID	COB identifier, according to [1]
	02	Transmissi on Type	UNSIGNED8	rw NVM-PA	FF	PDO transmission type: asynchronous
	03	Inhibit Time	UNSIGNED16	rw NVM-PA	0000	Inhibit time (min. time interval between the next transmission of a PDO) in ms 0000 _{hex} = trans mit now
	05	Event Timer	UNSIGNED16	rw NVM-PA	0000	Event counter 0000 _{hex} = not used

With the first TxPDO, the input data is fetched from the object dictionary (index 2012_{hex} , subindex 00_{hex}) and transferred after the first RxPDO has been received. The table below shows the object dictionary entry $1A00_{hex}$: Mapping parameters of the first Transmit PDO.

Index	Subin dex	Object name	Data type	Access location	FS	Meaning
hex	hex				hex	
1A00	00	Transmit PDO Mapping	UNSIGNED8	ro ROM	01	Mapping parameters of the first TxPDO, number of valid subindexes
	01	Mapped Object 1	UNSIGNED32	ro ROM	20120018	Index 2012 _{hex} , subindex 00 _{hex} , length = 24 bits

Manufacturer-specific objects

In addition to the device profile objects, the object dictionary also contains the definitions of manufacturer-specific objects. The area between index 2000_{hex} and 5FFF_{hex} in the object dictionary of the EASY221-CO is reserved for these objects. The table below lists the corresponding manufacturer-specific objects used.

Index	Sub- index	Object name	Data type	Access location	Map pable	FS	Meaning	
hex	hex					hex		
2001 ¹⁾	00	Coupling error	UNSIGNED8	ro easy	No	-	Error status of the EASY221-CO	
2002 ¹⁾	00	easy error	UNSIGNED8	ro easy	No	-	Error status of the easy/ MFD basic unit	
2011	00	Output data	UNSIGNED24	rw easy	Yes	140000	Output data to the easy/ MFD basic unit	
2012	00	Input data	UNSIGNED24	ro easy	Yes	-	Input data from the easy/MFD basic unit	
2020	00	Status	UNSIGNED8	ro easy	No	FF	Status 00 _{hex} = valid data, 01 _{hex} = invalid data, FF _{hex} = Initial isation	
2021	00	Command	DOMAIN Length = 7	rw easy	No	_	Command to the easy619/ 621	
2022	00	Response	DOMAIN Length = 7	ro easy	No	-	Response from the easy619/621	

Index	Sub- index	Object name	Data type	Access location	Map pable	FS	Meaning
hex	hex					hex	
3020	00	Status	UNSIGNED8	ro easy	No	FF	Status 00 _{hex} = valid data, 01 _{hex} = invalid data, FF _{hex} = Initial isation
3021	00	Command	DOMAIN Length = 8	rw easy/ MFD	No	_	Command to easy700/800, MFD-CP8
3022	00	Response	DOMAIN Length = 8	ro easy/ MFD	No	-	Response from easy700/800, MFD-CP8

 These two entries are also transmitted via the emergency message frame in the first two bytes of the Manufacturer Specific Error Field (→ section "Error messages (Emergency)".

Error messages (Emergency)

The EASY221-CO supports the defined generic error (1000_{hex}) described in the table below. It is triggered when the Generic Error bit 0 is set in the error register (index 1001_{hex} , subindex 00_{hex}).

In the manufacturer-specific error entry (Manufacturer Specific Error Field), byte 0 outputs the error code of the EASY221-CO (index 2001_{hex} , subindex 00_{hex}), and byte 1 outputs the error code of the connected easy600 (index 2002_{hex} , subindex 00_{hex}). This value is currently permanently set to 00_{hex} .

Data byte	Contents	Value	Description
1	Generic Error Code	1000 _{hex}	Generic Error (→ [1] Section 9.2.5.1)
2			
3	Error Register	01 _{hex}	Error register (index 1001 _{hex} , subindex 00 _{hex})
4	Manufacturer Specific Error Field (0)	xx _{hex}	Coupling error (index 2001 _{hex} , subindex 00 _{hex})
5	Manufacturer Specific Error Field (1)	00 _{hex}	easy error (index 2002 _{hex} , subindex 00 _{hex})
6	Manufacturer Specific Error Field (2)	00 _{hex}	not used
7	Manufacturer Specific Error Field (3)	00 _{hex}	not used
8	Manufacturer Specific Error Field (4)	00 _{hex}	not used

The last 16 errors are stored in the Predefined Error Field 1003_{hex} of the object dictionary and can be fetched via server SDO. Format of entries in the Standard Error Fields (Subindex 01_{hex} to 10_{hex}):

Data byte	Contents	Value	Description
1.	Error Code	1000 _{hex}	Generic Error (→ [1] Section 9.2.5.1)
2.			
3.	Additional Information	xx _{hex}	Coupling error (index 2001 _{hex} , subindex 00 _{hex})
4.		00 _{hex}	easy error (index 2002 _{hex} , subindex 00 _{hex})

Third data byte: coupling module status

Value 00_{hex}

The easy basic unit is connected to the EASY221-CO gateway via EASY-LINK.

Value 04_{hex}

The easy basic unit is either switched off or is not connected to the EASY221-CO gateway via EASY-LINK.

Attention

When communication between the easy600 basic unit and the EASY221-CO expansion unit goes down, a corresponding error code will be generated in the third data byte. Furthermore, the Rx/Tx data of the gateway will be transferred with the value $00_{\rm hex}$.

6 CANopen Protocols

The following protocols are used for the transfer of data via the CANopen bus:

- PDO protocol for the transfer of I/O data and operating mode.
 - Information on the data contents \rightarrow chapter 7.
- SDO protocol for the transfer of control commands:
 - Date and time, summer/winter time
 - Read/write image
 - Read/write function blocks.

Information on data contents \rightarrow chapter 8 (easy600), 9 (easy700) and 10 (easy800/MFD).

 Emergency protocol Information on the data contents → page 55.

PDO protocol

The EASY221-CO by default uses the Write PDO Protocol as shown in the figure below. The Read PDO Protocol (not shown) can be called if required.

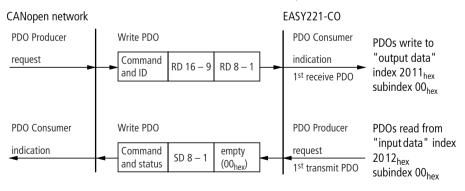


Figure 18: Write PDO Protocol

An indication informs the application that new data can be received via the first receive PDO and stored in the "output data" entry of the object dictionary (index 2011_{hex} , subindex 00_{hex}). The application then requests the transmission of data from the "input data" entry of the object dictionary (index 2012_{hex} , subindex 00_{hex}) via the first Tx PDO.

SDO protocol

General overview

Service Data Objects, or SDOs for short, are used for the confirmed transfer of variable length data between two stations. The data transfer from one station to another is described in the client server model. An SDO client (initiating station) has here direct access to the entries of the object dictionary of an SDO server and can download data records of any length to a server and upload them from a server. The data record to be transferred is specified by the index and subindex of the object dictionary entry that represents the data record. The connection between an SDO server requires two CAN identifiers as a message ID is required for each transfer direction. The connection between a client and a server is also called the SDO channel.

Segmented transfer is required in order for data of any length to be transferred via an SDO channel since the maximum transfer capacity of a CAN telegram is only 8 bytes. This is based on the SDO protocols specified under [CIA-301].

Segmented protocol

If access to the object dictionary requires the transfer of more than 4 bytes, access to the object dictionary entry is specified with a 16-bit index and 8-bit subindex within a confirmed initialisation sequence. The confirmed and segmented data is then transferred. Every transfer moves 7 bytes of data. The protocol on which this is based ensures receive-based flow control as well as the detection of any data segments that are transferred twice. The data transfer can be aborted by either the client or the server.

The transfer is initiated by means of an Initiate Download sequence for a segmented (non-expedited) data transfer. The data is then transferred in segments. Figure 19 shows the basic principle of the segmented SDO transfer.

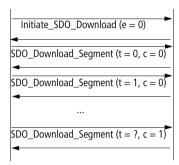


Figure 19: Segmented SDO download protocol

Expedited transfer protocol

If no more than 4 bytes are to be transferred, this can be executed with the expedited transfer protocol. This transfers the data already with a one byte protocol information as well as the address of the OD entry (index, subindex) within the initialisation sequence (—> figure 20).

Figure 20: Expedited SDO download protocol.

Control byte

The control byte specifies the type of telegram (request/ response), type of transfer (normal/expedited) and the number of bytes in the data field that do not contain any data.

Figure 21 shows the protocol for writing an OD entry using the expedited SDO protocol. The client control byte indicates that an Initiate Download Request is present. This byte also indicates the transfer type as "expedited transfer", as well as the number of data bytes contained in the data field. The server control byte indicates an Initiate Download Response accordingly. The logical address of the OD entry is then sent as a 16-bit index and 8-bit subdindex following the control bytes.

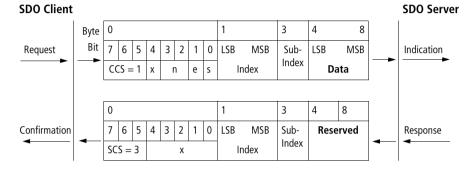


Figure 21: Writing an OD entry using the Expedited Domain Download Protocol

e = transfer type 0: non-expedited transfer, 1: expedited transfer

s = size indicator 0: size not indicated, 1: size indicated

n = number of bytes in data that do not contain data

x = nc

CCS = 1 Client Command Specifier = initiate download request

SCS = 3 Server Command Specifier = initiate download response

The description of the CANopen protocol [CIA-301] is available on the Internet at http://www.can-cia.org.

The Download_SDO_Segment_Protocol is presented here for a better understanding of the following examples.

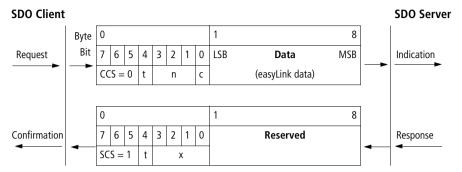


Figure 22: Download Transfer Segment after successful initialisation.

- t Toggle Bit: The Toggle bit must be inverted with every transferred data packet. Request and Response must use the same bit as Toggle bit.
- c Indication whether segments still have to be transferred:
 0: Other segments still have to be transferred
 - 1: No other segments have to be transferred
- n Number of Bytes in Data that do not contain data
- x Value has no meaning
- CCS = 0 Client Command Specifier = download segment request
- SCS = 1 Server Command Specifier = download segment response

SDO protocol for easy/MFD

Different CANopen telegram sequences have to be initiated in order to access the acyclic data of the basic unit. The entire sequence is illustrated in Figure 23.

First of all, the client initiates with Initiate SDO Download the write operation to the object dictionary Command entry in the server:

Device series	Object dictionary entries
easy600	Index 2021 _{hex} Subindex 00 _{hex}
easy 700/800/MFD	Index 3021 _{hex} Subindex 00 _{hex}

Two different data lengths are used for the SDO transfer with the EASY221-CO. These must be used according to the basic unit in place.

Device series	Length of the EASY-LINK data
easy600	7 bytes
easy700/800/MFD	8 bytes

As the data length is more than 4 bytes, a Download SDO Segment is required in order to complete the segmented transfer. The easy Protocol Handler then downloads the received data to easy/MFD, using the extended protocol.

The client then checks with Initiate SDO Upload whether the transfer is completed. This is indicated by the status in the object dictionary:

Device series	Object dictionary entries
easy600	Index 2020 _{hex} Subindex 00 _{hex}
easy 700/800/MFD	Index 3020 _{hex} Subindex 00 _{hex}

As only one byte is transferred at this stage, this is executed with the Expedited Transfer.

The client polls the status cyclically (at intervals of approx. 50 to 100 ms), until the content is 00_{hex} . The response from easy/MFD is then provided in the object dictionary.

Device series	Object dictionary entries
easy600	Index 2022 _{hex} Subindex 00 _{hex}
easy 700/800/MFD	Index 3022 _{hex} Subindex 00 _{hex}

- In order to read the message, the client initiates the read operation with Initiate SDO Upload.
- Since this data also has a length of up to 7 bytes (easy600) and 8 bytes (easy700/800/MFD), a subsequent Upload SDO Segment is required in order to read the remaining data.

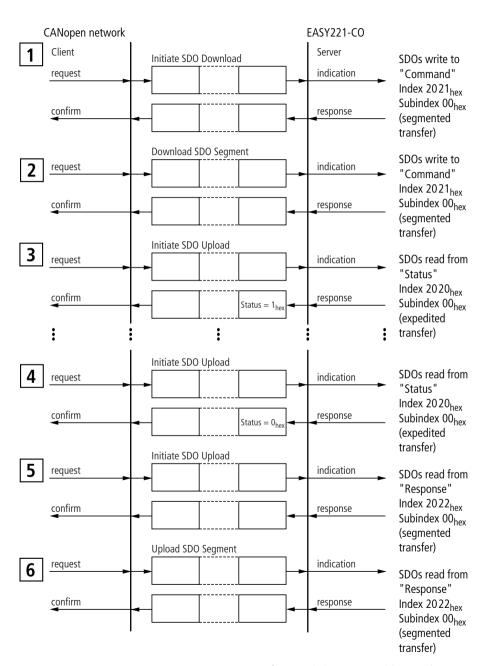
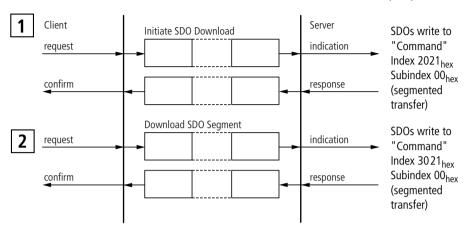


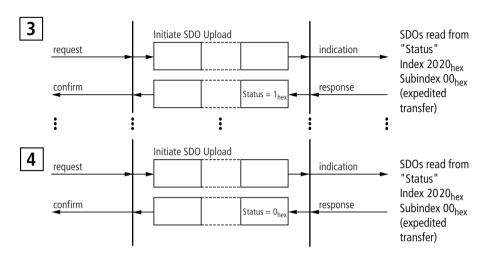
Figure 23: Sequence for extended SDO protocol (easy600)


SDO protocol

Example of easy600: Read time (7 bytes)

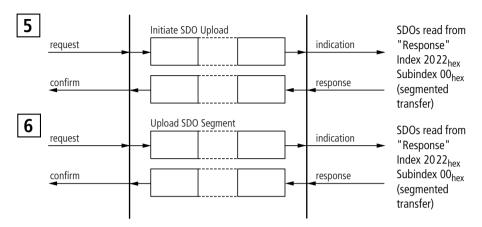
The time is read from the basic unit via the SDO Transfer. The following easy telegram structure is specified in the manual (→ page 87).

Byte	Meaning	Value
0	Command: Read	5D
1	Weekday	00
2	Hour	00
3	Minute	00
4	Summer/winter time	00


This data must be transferred with the CANopen protocol.

Description ID (hex)		CAN data – byte (hex)							
Write command to EASY221-CO		0	1	2	3	4	5	6	7
Initialise the SDO download with 7 data bytes	602	21	21	20	00	07 ¹	00	00	00
Confirmation of the SDO Block Transfer	582	60	21	20	00	00	00	00	00
Transfer of block 1 with 7 data bytes	602	01	5D ²	00 ²					
Confirmation of the data block to be transferred	582	20	00	00	00	00	00	00	00

¹⁾ Number of easy-data bytes to be transferred: easy600 - 7 bytes


²⁾ Valid data from easy basic unit

Description	ID (hex)	CAN data – byte (hex)							
Scan status		0	1	2	3	4	5	6	7
Initialise the SDO upload	602	40	20	20	00	00	00	00	00
Transfer of status byte	582	4F	20	20	00	01 ³	XX	XX	ХХ
New attempt		Data 1 is scanned via index 2020_{hex} and Subindex 00_{hex} until the value = 00_{hex} .							
Initialises the SDO upload	602	40	20	20	00	00	00	00	00
Transfer of status byte	582	4F	20	20	00	00 ³	XX	XX	ХХ

³⁾ Only if the value 00_{hex} is shown is it ensured that the corresponding response data is available in the receive buffer.

xx = Value has no meaning

Description	ID (hex)	CAN	CAN data – byte (hex)								
Call response		0	1	2	3	4	5	6	7		
Initialise the SDO upload	602	40	22	20	00	00	00	00	00		
Confirmation of the SDO Upload Block Transfer with 7 bytes	582	41	22	20	00	07 ⁴	XX	xx	XX		
Scan of 1st data block	602	60	22	20	00	00	00	00	00		
Transfer of the easy response byte	582	01	42 ⁵	03 ⁵	17 ⁵	11 ⁵	00 ⁵	00 ⁵	00 ⁵		

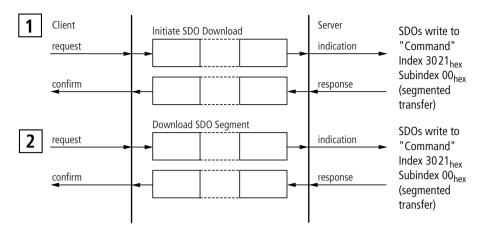
⁴⁾ Number of easy-data bytes to be transferred: easy600 - 7 bytes

⁵⁾ Valid data from easy basic unit

xx = Value has no meaning

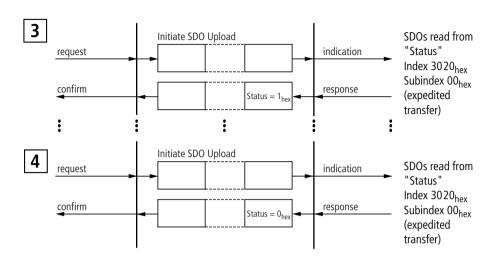
Evaluation of the received data

Byte	Meaning	Value
0	Response: read successful	42
1	Weekday	03
2	Hour	17
3	Minute	11
4	Summer/winter time	00


Thursday, 17:11 pm – winter time

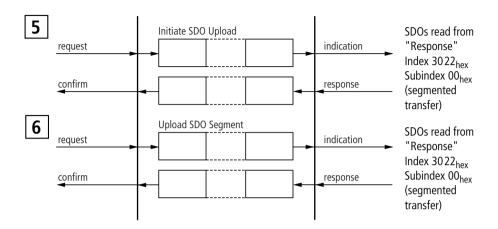
Example of easy800: Read time (8 bytes)

The time is read from the basic unit via the SDO Transfer. The following easy telegram structure is specified for this in the manual (->> page 177).


Byte	Meaning		Value
0	Command: Read		93
1	Len		05
2	Index		00
3	Data 1	Hour	00
4	Data 2	Minute	00
5	Data 3	Day	00
6	Data 4	Month	00
7	Data 5	Year	00

This data must be transferred with the CANopen protocol.

Description	ID (hex)	CAN	data –	byte (h	ex)				
Write command to EASY221-CO		0	1	2	3	4	5	6	7
Initialise the SDO download with 7 data bytes	602	21	21	30	00	08 ¹	00	00	00
Confirmation of the SDO Block Transfer	582	60	21	30	00	00	00	00	00
Transfer of block 1 with 7 data bytes	602	00	93 ²	05 ²	00 ²				
Confirmation of the data block to be transferred	582	20	00	00	00	00	00	00	00
Transfer of block 2 with 8th data byte	602	1D	00 ²	XX	XX	XX	XX	XX	XX
Confirmation of the data block to be transferred	582	30	00	00	00	00	00	00	00


- 1) Number of easy data bytes to be transferred: easy700/800/MFD 8 bytes
- 2) Valid data from easy basic unit

Description	ID (hex)	CAN data – byte (hex)								
Scan status		0	1	2	3	4	5	6	7	
Initialise the SDO upload	602	40	20	30	00	00	00	00	00	
Transfer of status byte	582	4F	20	30	00	01 ³	XX	XX	XX	
New attempt		Data 1 is scanned via index 3020 _{hex} and Subindex 00 _{hex} until the value = 00 _{hex} .								
Initialise the SDO upload	602	40	20	30	00	00	00	00	00	
Transfer of status byte	582	4F	20	30	00	00 ³	xx	XX	xx	

³⁾ Only if the value 00_{hex} is shown is it ensured that the corresponding response data is available in the receive buffer.

xx = Value has no meaning

Description	ID (hex)	CAN data – byte (hex)							
Call response		0	1	2	3	4	5	6	7
Initialise the SDO upload	602	40	22	30	00	00	00	00	00
Confirmation of the SDO Upload Block Transfer with 8 bytes	582	41	22	30	00	08 ⁴	00	00	00
Scan of 1st data block	602	60	22	30	00	00	00	00	00
Transfer of the first 7 easy response bytes	582	00	C2 ⁵	05 ⁵	00 ⁵	16 ⁵	21 ⁵	01 ⁵	05 ⁵
Scan of 2nd data block	602	70	22	30	00	00	00	00	00
Transfer of the last easy response byte	582	1D	03 ⁵	XX	XX	XX	XX	XX	XX

⁴⁾ Number of easy data bytes to be transferred: easy700/800/MFD – 8 bytes

⁵⁾ Valid data from easy basic unit

xx = Value has no meaning

Evaluation of the received data

Byte	Meaning		Value
0	Response: read s	uccessful	C2
1	Len		05
2	Index		00
3	Data 1	Hour	16
4	Data 2	Minute	21
5	Data 3	Day	01
6	Data 4	Month	05
7	Data 5	Year	03

22:31 pm, 01.05.2003

Emergency protocol

The Write EMCY Protocol is used for the EASY221-CO, as shown in the figure below. The Emergency protocol does not require confirmation.

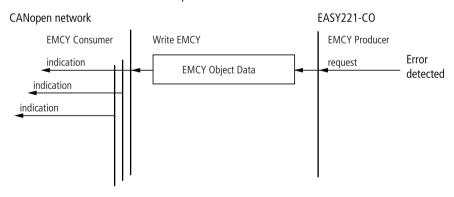


Figure 24: Emergency Object Protocol

7 PDO – Direct Data Exchange with easy/MFD

The CANopen master can exchange the following data with the easy/MFD via the direct cyclic data exchange (PDO):

- Write operation:
 - Set and reset the easy/MFD inputs
 - Determine of the RUN/STOP mode.
- Read operation:
 - Scan the output states of the easy/MFD
 - Scan the operating mode of the easy/MFD

The PDO protocol is used for the direct data exchange. Detailed information on this is provided on page 59. The direct data exchange is executed via the object dictionary entries 2011_{hex} (input data) and 2012_{hex} (output data) (→ page 54).

The terms "input data" and "output data" are used from the point of view of the CANopen master.

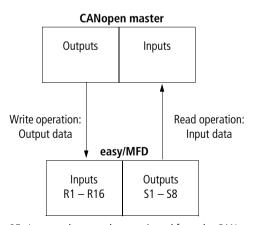


Figure 25: Input and output data as viewed from the CANopen master

Output data (2011_{hex}): operating mode, R1 – R16

The entries 2011_{hex} and 2012_{hex} can be mapped and can be transferred via PDOs. The object 2011_{hex} contains the output data of the CANopen master that is written via the EASY221-CO gateway to the inputs (R1 - R16) of the easy/ MFD. The output data is provided in bytes 0 to 2 and is described in detail in the following tables:

Table 1: Byte 0 to 2: output data, operating mode

Byte	Meaning	Value
0	Set operating mode	→ table 2
1	Set/reset the easy/MFD inputs R9 to R16	→ table 3
2	Set/reset the easy/MFD inputs R1 to R8	→ table 4

The master writes the following data to the bytes 0, 1 and 2:

Table 2: Byte 0: Operating mode

easy operating mode	Bit							
	7	6	5	4	3	2	1	0
Index for setting the basic unit to the safety state	0	0	0	0	0	0	0	0
Index for transferring valid data	0	0	0	1	0	1	0	0
RUN command	0	0	1	1	0	1	0	0
STOP command	0	1	0	0	0	1	0	0

0 = status "0", 1 = status "1"

Explanation:

Value $14_{hex} = 00010100_{bin}$:

Byte 0 must always contain this value if data is to be written to the easy/MFD basic unit via the EASY221-CO gateway.

Value $34_{hex} = 00110100_{hin}$:

This value sets the easy/MFD status from STOP to RUN. It is only interpreted as a command and therefore does not permit an additional transfer of data. The index value 14_{hex} must be used in this situation.

Value $44_{hex} = 01000100_{hin}$:

This value sets the easy/MFD status from RUN to STOP. It is also used only as command and is therefore works in the same way as the RUN command.

Value $00_{hex} = 00000000_{bin}$:

If this value is written to the control byte, the gateway overwrites the Rx data with zero. This function is only required if a master is to be set to STOP mode and as a resultant final measure transfers zero values in all mapped PDOs in order to ensure a safety state.

Even if the I/O of a control relay can be assigned directly to a specific memory area of the master PLC, the correct data structure format (e.g.: input data byte $0 = 14_{hex}$) must nevertheless still be observed.

Table 3:	Rvte	1: Set/reset the	easy/MFD	innuts R9	to R16
Tubic J.	Dyte	i. Jenieset uie	Cusy/IVII D	iliputs its	to it io

easy/MFD input	Bit							
	7	6	5	4	3	2	1	0
R9								0/1
R10							0/1	
R11						0/1		
R12					0/1			
R13				0/1				
R14			0/1					
R15		0/1						
R16	0/1							

0 = status "0", 1 = status "1"

Example:

Value $19_{\text{hex}} = 00011001_{\text{bin}}$: Enables R13, R12 and R9.

Table 4: Byte 2: Set/reset the easy/MFD inputs R1 to R8

easy/MFD input	Bit							
	7	6	5	4	3	2	1	0
R1								0/1
R2							0/1	
R3						0/1		
R4					0/1			
R5				0/1				
R6			0/1					
R7		0/1						
R8	0/1							

0 = status "0", 1 = status "1"

Value $2B_{hex} = 0010 \ 1011_{bin}$: Enables R6, R4, R2 and R1.

If control commands and I/O data are used at the same time:

- The inputs will retain their previous state until this control command has been executed.
- The input bytes will be updated after the data exchange control command has been terminated.

Input data (2012_{hex}): operating mode, S1 – S8

The entries $20\,11_{hex}$ and $20\,12_{hex}$ can be mapped and can be transferred via PDOs. The object $20\,12_{hex}$ contains the output data of the easy/MFD (S data) that is transferred via the EASY221-CO gateway to the CANopen master. The tables below describe the structure of the input data in detail.

Table 5: Input data, operating mode

Byte	Meaning	Value
0	Scan the operating mode	→ table 6
1	Scan status of the easy outputs S1 to S8	→ table 7
2	n.c.	00 _{hex}

The master reads the following data from bytes 0, 1 and 2:

Table 6: Byte 0: Operating mode

easy identification	Bit							
	7	6	5	4	3	2	1	0 STOP/RUN
Without debounce	0	0	0	1	0	0	0	0/1
With debounce	0	0	1	0	0	0	0	0/1

0 = status "0" 1 = status "1"

Example:

Value $21_{hex} = 00100001_{bin}$:

easy is in RUN mode and operates with debounce

Table 7: Byte 1: Status of the easy outputs S1 to S8

easy/MFD	Bit	Bit								
output	7	6	5	4	3	2	1	0		
S1								0/1		
S2							0/1			
S3						0/1				
S4					0/1					
S5 S6				0/1						
S6			0/1							
S7		0/1								
\$8	0/1									

0 = status "0" 1 = status "1"

Example:

Value $19_{hex} = 00011001_{bin}$: S5, S4 and S1 are active

Byte 2: not used

If control commands and I/O data are used at the same time:

- The inputs will retain their previous state until this control command has been executed.
- The input bytes will be updated again after the data exchange control command has been executed.

If the status value of the coupling module is invalid (= 04_{hex}), then byte 1 (data byte) is transferred with the value 00_{hex} to the communication bus.

8 SDO – Control Commands for easy600

The object dictionary entries Status (2020_{hex}), Command (2021_{hex}) and Response (2022_{hex}) provide the interface for extended data exchange with easy600.

Control commands can be used to initiate data exchange for the special services:

- "Date and time, Summer/winter time" (page 87)
- "Reading image data" (page 91)
- "Read/write function blocks" (page 102).

Attention!

The I/O data retains its previously defined state while a control command is being executed. The I/O data will not be updated until data exchange for the control command has been terminated.

Caution!

You may use only the values specified for the command code.

Verify data to be transferred in order to avoid unnecessary errors.

The SDO-CANopen protocol (→ page 60) is required in order to ensure the safe exchange of data via CANopen from master to slave and vice versa.

The basic unit must be in the mode of the LCD status display in order for the different parameters to be written.

SDO – Control Commands for easy600

The SDO download of a string for **Command** initiates the transfer of set data to easy600 with an extended protocol. After the data has been exchanged, the response of easy600 can be fetched from **Response** via the SDO upload, while **Status** returns the data transfer status. 01_{hex} indicates that data transfer is still busy, and a new write access will not be executed. The **Status** 00_{hex} indicates that data transfer has been completed and the response can be read from **Response**. **Status** 01_{hex} indicates either the occurrence of a data transfer error or that invalid data was entered in **Command**. In this case **Response** contains undefined data.

Date a	and time, Summer/ r time	Telegram st	ructure								
Byte	Meaning	Value (hex), se	nt by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	Read	5D	-	0	1	0	1	1	1	0	1
	Write	2A	-	0	0	1	0	1	0	1	0
	Response										
	Read successful	_	C2/42	1/0	1	0	0	0	0	1	0
	Write successful	_	C1/41	1/0	1	0	0	0	0	0	1
	Command rejected	-	C0/40	1/0	1	0	0	0	0	0	0
1	Weekday										
	Read operation	00	→ table 8								
	Write operation	→ table 8	00								
2	Hour										
	Read operation	00	→ table 9								
	Write operation	→ table 9	00								
3	Minute										
	Read operation	00	→ table 10								
	Write operation	→ table 10	00								
4	Summer/winter time										
	Read operation	00	→ table 11								
	Write operation	→ table 11	00								

Table 8: Byte 1: Weekday (value range 00 to 06)

Weekday	Bit							
	7	6	5	4	3	2	1	0
Monday = 00	0	0	0	0	0	0	0	0
Tuesday = 01	0	0	0	0	0	0	0	1
Wednesday = 02	0	0	0	0	0	0	1	0
Thursday = 03	0	0	0	0	0	0	1	1
Friday = 04	0	0	0	0	0	1	0	0
Saturday = 05	0	0	0	0	0	1	0	1
Sunday = 06	0	0	0	0	0	1	1	0

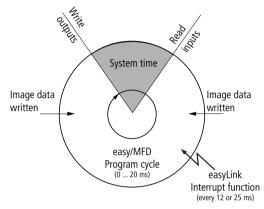
Table 9: Byte 2: Hour (value range 00 to 23)

Value (bcd)	Value	10			Value	e 1		
	Bit				Bit			
	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
9	0	0	0	0	1	0	0	1
14	0	0	0	1	0	1	0	0
23	0	0	1	0	0	0	1	1

Table 10: Byte 3: Minute (value range 00 to 59)

Value (bcd)	Value	e 10			Valu	e 1		
	Bit				Bit			
	7	6	5	4	3	2	1	0
00	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	U
10	0	0	0	1	0	0	0	0
•••								
21	0	0	1	0	0	0	0	1
42	0	1	0	0	0	0	1	0
59	0	1	0	1	1	0	0	1

Table 11: Byte 4: Winter/summer time (value range 00 to 01)


Value (bcd)	Value	10			Valu	Value 1					
	Bit	Bit				Bit					
Function	7	6	5	4	3	2	1	0			
Winter time = 00	0	0	0	0	0	0	0	0			
Summer time = 01	0	0	0	0	0	0	0	1			

It is Friday, the current time-of-day is set to CET summer time, 14:36 p.m.

Byte	Meaning	Value (hex), s	ent by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	Write	2A	-	0	0	1	0	1	0	1	0
	Response										
	Write successful	_	C1/41	1/0	1	0	0	0	0	0	1
1	Weekday	04	00								
2	Hour (14 _{dec})	0E	00								
3	Minute (36 _{dec})	24	00								
4	Summer/winter time	01	00								

Reading image data

General notes on working with image data

When writing to image data, it must be taken into account that an image (e.g. inputs, outputs,...) used in the easy/MFD program is also written cyclically by the actual program. The only image data that is unchanged is the data that is not used in the program and is therefore not overwritten in the program cycle. This operating principle also means that an image written via EASY-LINK, such as output data is only then output at the physical outputs of the easy/MFD when the control relay is in RUN mode.

Overview

Operands	Meaning	Read/ write	Comm and	Page
I1 – I16, P1 – P4, ESC/OK/DEL/ALT	"Digital inputs, P and operating buttons"	Read	5C	92
17 – 18	"Analog inputs: I7 – I8"	Read	5B	95
T1 – T8, C1 – C8, G 1 – G 4, A1 – A8	"Timing relays, counter relays, time switches and analog value comparators"	Read	5E	96
M1 – M16, Q1 – Q8, D1 – D8	"Markers, digital outputs and text display markers"	Read	5F	99

Digital inputs, P and operating buttons

The following command reads the logic state of the P1 to P4 digital button inputs as well as the logic state of the digital inputs I1 to I16.

The status of the P buttons is only displayed if

- a P button is used in the circuit diagram and
- the pushbuttons are activated on the device.

Telegram structure

Byte	Meaning	Value (hex), s	ent by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	Read	5C	_	0	1	0	1	1	1	0	0
	Response										
	Read successful	-	C2/42	1/0	1	0	0	0	0	1	0
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Status of inputs I1 to I8	00	→ table 12								
2	Status of inputs I9 to I16	00	→ table 13								
3	Status of the buttons	00	→ table 14								

Table 12: Byte 1: Status of inputs I1 to I8

Value	Bit							
	7	6	5	4	3	2	1	0
I1								0/1
12							0/1	
13						0/1		
14					0/1			
15				0/1				
16			0/1					
17		0/1						
18	0/1							

Value 0 =switched off, Value 1 =switched on

Table 13: Byte 2: Status of inputs I9 to I16

Value	Bit							
	7	6	5	4	3	2	1	0
19								0/1
I10							0/1	
l11						0/1		
l12					0/1			
l13				0/1				
I14			0/1					
l15		0/1						
l16	0/1							

Value 0 =switched off, Value 1 =switched on

Table 14: Byte 3: Status of buttons

Meaning	Bit							
	7	6	5	4	3	2	1	0
Status P1								0/1
Status P2							0/1	
Status P3						0/1		
Status P4					0/1			
ESC not actuated/actuated				0/1				
OK not actuated/actuated			0/1					
DEL not actuated/actuated		0/1						
ALT not actuated/actuated	0/1							

Value $01hex = 00000001_{bin}$: P1 active – or cursor button > is actuated.

Analog inputs: 17 - 18

The following command is used to read the values of both analog inputs I7, I8 (only EASY...-DC-..).

Byte	Meaning	Value (hex), s	Value (hex), sent by								
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	Read	5B	_	0	1	0	1	1	0	1	1
	Response										
	Read successful	_	C2/42	1/0	1	0	0	0	0	1	0
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Analog value of I7	00	See below								
2	Analog value of I8	00									

Analog inputs I7 and I8 (byte 1 and byte 2)

These two bytes contain the actual value of the analog inputs I7 and I8. Their value lies between 00 and 99, which is equivalent to a voltage of 0 to 9.9 V at the inputs. The corresponding values are returned in hexadecimal format.

Example:

Byte	Valu e	Description
0	42 _{hex}	The read request has been executed successfully. Data follows.
1	20 _{hex}	Voltage level at input I7 = 3.2 V.
2	31 _{hex}	Voltage level at input I8 = 4.9 V.

Timing relays, counter relays, time switches and analog value comparators

The following command reads the logic state of all timing relays, counters, time switches and analog value comparators.

Telegram structure

Byte	Meaning	Value (hex), s	ent by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	Read	5E	_	0	1	0	1	1	1	1	0
	Response										
	Read successful	_	C2/42	1/0	1	0	0	0	0	1	0
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Timing relay status	00	→ table 15								
2	Counter relay status	00	→ table 16								
3	Time switch status	00	→ table 17								
4	Analog value comparator status	00	→ table 18								

Table 15: Byte 1: Status of timing relays

	Bit	Bit										
	7	6	5	4	3	2	1	0				
T1								0/1				
T2 T3							0/1					
T3						0/1						
T4 T5					0/1							
T5				0/1								
T6			0/1									
T7		0/1										
T8	0/1											

Value $2B_{hex} = 00101011_{bin}$: T6, T4, T2 and T1 are active.

Table 16: Byte 2: Status of the counter relays

	Bit							
	7	6	5	4	3	2	1	0
C1								0/1
C2							0/1	
C2 C3 C4 C5 C6						0/1		
C4					0/1			
C5				0/1				
C6			0/1					
C7		0/1						
C8	0/1							

Example:

Value $19_{hex} = 00011001_{bin}$: C5, C4 and C1 are active

Table 17: Byte 3: Status of time switches

	Bit										
	7	6	5	4	3	2	1	0			
G 1								0/1			
© 2							0/1				
@ 3						0/1					
G 4					0/1						
				0							
			0								
		0									
	0										

Value $08_{hex} = 00001000_{bin}$:

W3 is active.

Table 18: Byte 4: Status of analog value comparators

	Bit							
	7	6	5	4	3	2	1	0
A1								0/1
A2							0/1	
A3						0/1		
A3 A4					0/1			
A5				0/1				
A6			0/1					
A7		0/1						
A8	0/1							

Example:

Value $84_{hex} = 10001000_{bin}$:

A3 and A8 are active.

Markers, digital outputs and text display markers

The following command will read the logic state of all markers M1 to M16, digital outputs Q1 to Q8, text markers D1 to D8.

Telegram structure

Puto Mooning Value (hex) cont by Pit											
Byte	Meaning	Value (hex), s	ent by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	Read	5F	_	0	1	0	1	1	1	1	1
	Response										
	Read successful	_	C2/42	1/0	1	0	0	0	0	1	0
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Status of markers M1 to M8	00	→ table 19								
2	Status of markers M9 to M16	00	→ table 20								
3	Status of digital outputs Q1 to Q8	00	→ table 21								
4	Status of text display markers D1 to D8	00	→ table 22								

Table 19: Byte 1: Status of markers M1 to M8

	Bit										
	7	6	5	4	3	2	1	0			
M1								0/1			
M2							0/1				
M3						0/1					
M4					0/1						
M5				0/1							
M6			0/1								
M7		0/1									
M8	0/1										

Value $2B_{hex} = 00101011_{bin}$: M6, M4, M2 and M1 are active.

Table 20: Byte 2: Status of markers M9 to M16

	Bit							
	7	6	5	4	3	2	1	0
M9								0/1
M10							0/1	
M11						0/1		
M12					0/1			
M13				0/1				
M14			0/1					
M15		0/1						
M16	0/1							

Example:

Value $19_{hex} = 00011001_{bin}$: M13, M12 and M9 are active

Bit 7 5 3 2 0 6 4 1 Q1 0/1 Q2 0/1 Q3 0/1 Q4 0/1 Q5 0/1 Q6 0/1

Table 21: Byte 3: Status of digital outputs Q1 to Q8

0/1

0/1

Q7

Q8

Value $A8_{hex} = 10101000_{bin}$: Q8, Q6 and Q4 are active.

Table 22: Byte 4: Status of text display markers D1 to D8

	Bit							
	7	6	5	4	3	2	1	0
D1								0/1
D2							0/1	
D3 D4 D5 D6						0/1		
D4					0/1			
D5				0/1				
D6			0/1					
D7		0/1						
D8	0/1							

Example:

Value $84_{hex} = 10000100_{bin}$:

D3 and D8 are active.

Read/write function blocks

Overview

The first data byte of the string to be written for **Command** is a Command to easy600 and defines the meaning of the remaining six data bytes. The table below lists the possible commands.

Operands	Meaning	Command	Page
A1 – A8	"Analog value comparators A1 – A8: write actual values (function, comparison values)"	22 _{hex} – 29 _{hex}	103
C1 – C8	"Counter relays C1 – C8: read actual value"	$3B_{\text{hex}} - 42_{\text{hex}}$	106
	"Counter relays C1 – C8: write setpoint"	09 _{hex} - 10 _{hex}	108
	"Counter relays C1 – C8: read setpoint"	$43_{\text{hex}} - 4A_{\text{hex}}$	110
T1 – T8	"Timing relays T1 – T8: read actual value (time base, actual value, switch function)"	$2B_{\text{hex}} - 32_{\text{hex}}$	112
	"Timing relays T1 – T8: write parameters (time base, setpoint, switch function)"	01 _{hex} - 08 _{hex}	116
G 1 – G 4	Time switch ∰1 – ∰4: read actual values (channel, ON time, OFF time)	$4B_{\text{hex}} - 5A_{\text{hex}}$	120
	Time switch 4 1 – 4 4: write setpoints (channel, ON time, OFF time)	12 _{hex} – 21 _{hex}	124

Analog value comparators A1 – A8: write	actual
values (function, comparison values)	

Byte	Meaning	Value (hex), se	ent by	Bit	Bit						
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	A1	22	-	0	0	1	0	0	0	1	0
	A2	23	_	0	0	1	0	0	0	1	1
	A3	24	_	0	0	1	0	0	1	0	0
	A4	25	_	0	0	1	0	0	1	0	1
	A5	26	_	0	0	1	0	0	1	1	0
	A6	27	_	0	0	1	0	0	1	1	1
	A7	28	_	0	0	1	0	1	0	0	0
	A8	29	_	0	0	1	0	1	0	0	1
	Response										
	Write successful	-	C1/41	1/0	1	0	0	0	0	0	1
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Control byte	→ table 23	Invalid								
2	Comparison value for comparison with constant	→ page 104	00								

Keep within the limits of the value range: the comparison values and the function are part of an *.eas file. If these values are changed, the original *.eas file will no longer match the file in EASY6..

Remember this characteristic when uploading, downloading or comparing easy circuit diagrams with EASY-SOFT. When downloading from the PC the latest version of the "*.eas" is overwritten. The comparison shows that the circuit diagrams are not identical.

Table 23: Byte 1: control byte

Meaning	Bit							
	7	6	5	4	3	2	1	0
Compare: "≧"								0
Compare: "≦"								1
17 with 18						0	0	
17 with constant						0	1	
18 with constant						1	0	
Fixed			0	0	0			
Does not appear in the parameter menu		1						
Appears in the parameter menu		0						
Execute	1							

 $82_{hex} = 1000\,0010_{bin}$ means that the selected analog value comparator will be enabled in the circuit diagram of the basic unit as soon as the analog value at input I7 \geq the defined constant (\longrightarrow byte 2).

Comparison value (byte 2)

The second byte contains the comparison value as a constant. Its value lies between 0 and 99 and is equivalent to a comparison voltage of 0.0 to 9.9 V. This value you must also specify in hexadecimal format.

Example:

The comparison value = 20_{hex} is equivalent to an analog voltage of 3.2 V.

The analog value comparator A8 has the following settings:

• Compare I7 < 4.7 V

The master initiates the command to reduce the comparison value to 4.2 V.

Byte	Meaning	Value (hex)	Bit	t						
			7	6	5	4	3	2	1	0
0	Command: A8	29	0	0	1	0	1	0	0	1
	Response: Write successful	-	0	1	0	0	0	0	0	1
1	Control byte	\rightarrow	1	0	0	0	0	0	1	1
2	Comparison value for comparison with constant	2A	0	0	1	0	1	0	1	0

The slave responds with the following telegram:

Byte	Meaning	Value (hex)	Bit							
			7	6	5	4	3	2	1	0
0	Response: Write successful	41	0	1	0	0	0	0	0	1
1	Comparators	Invalid								
2	Comparison value for comparison with constant	00								

Counter relays C1 – C8: read actual value Telegram structure

Byte	Meaning	Value (hex),	sent by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command: Read										
	C1	3B	-	0	0	1	1	1	0	1	1
	C2	3C	-	0	0	1	1	1	1	0	0
	C3	3D	-	0	0	1	1	1	1	0	1
	C4	3E	-	0	0	1	1	1	1	1	0
	C5	3F	-	0	0	1	1	1	1	1	1
	C6	40	_	0	1	0	0	0	0	0	0
	C7	41	_	0	1	0	0	0	0	0	1
	C8	42	-	0	1	0	0	0	0	1	0
	Response										
	Read successful	-	C2/42	1/0	1	0	0	0	0	1	0
	Command rejected	-	C0/40	1/0	1	0	0	0	0	0	0
1	Control byte	00	→ table 24	Х	Х	Х	Х	Х	Х	Х	Х
2	Counter relay actual value (low byte)	00	→ page 107								
3	Counter relay actual value (high byte)	00									

Table 24: Byte 1: control byte

Meaning	Bit									
	7	6	5	4	3	2	1	0		
n.c.			0	0	0	0	0	0		
Does not appear in the parameter menu		1								
Appears in the parameter menu		0								
Execute (processed in the circuit diagram)	1									

Value $80_{hex} = 10000000_{bin}$:

The actual value of the counter relay is set and appears in the parameter menu.

Actual value (byte 2 and byte 3)

These two bytes determine the actual value of the counter relay. The actual value can lie within the value range 0 to 9999_{dec}. In order to determine the corresponding actual value, you need to convert the 16-bit hexadecimal low and high value into the decimal format.

Example:

High value: 10_{hex} Low value: DE_{hex} $10DE_{hex} = 4318_{dec}$

Counter relays C1 – C8: write setpoint

Telegram structure

Byte	Meaning	Value (hex), se	ent by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	C1	09	_	1/0	0	0	0	1	0	0	1
	C2	0A	_	1/0	0	0	0	1	0	1	0
	C3	OB	_	1/0	0	0	0	1	0	1	1
	C4	0C	_	1/0	0	0	0	1	1	0	0
	C5	0D	-	1/0	0	0	0	1	1	0	1
	C6	0E	-	1/0	0	0	0	1	1	1	0
	C7	OF	_	1/0	0	0	0	1	1	1	1
	C8	10	_	1/0	0	0	1	0	0	0	0
	Response										
	Write successful	-	C1/41	1/0	1	0	0	0	0	0	1
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Control byte	→ table 25	00								
2	Setpoint value (low byte)	→ page 109	00								
3	Setpoint value (high byte)		00								

Value range of the counter values: 0000 to 9999

Keep within the value range.

The value is part of an "*.eas file" (EASY-SOFT file). If these values are changed, the original *.eas file will no longer match the file in EASY6..

Remember this characteristic when uploading, downloading or comparing easy circuit diagrams with EASY-SOFT.

When downloading from the PC the latest version of the "*.eas" is overwritten.

The comparison shows that the circuit diagrams are not identical.

Table 25: Byte 1: control byte

Meaning	Bit										
	7	6	5	4	3	2	1	0			
n.c.			0	0	0	0	0	0			
Does not appear in the parameter menu		1									
Appears in the parameter menu		0									
Execute	1										

Example:

Value $80_{hex} = 1000000_{bin}$:

The setpoint is written to the selected counter relay and appears in the parameter menu.

Writing the setpoint (byte 2 and byte 3)

These two bytes determine the setpoint of the counter relay. The setpoint can be set within the range from 0 to 9999_{dec}. To do so, you must convert the required decimal into the equivalent hexadecimal value and then split it up into the low byte and high byte.

Example:

Setpoint = $4318_{dec} = 10DE_{hex}$:

Low value: DE_{hex} High value: 10_{hex}

Counter relays C1 – C8: read setpoint

Byte	Meaning	Value (hex), s	ent by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	C1	43	_	0	1	0	0	0	0	1	1
	C2	44	_	0	1	0	0	0	0	1	0
	C3	45	_	0	1	0	0	0	1	0	1
	C4	46	_	0	1	0	0	0	1	1	0
	C5	47	_	0	1	0	0	0	1	1	1
	C6	48	_	0	1	0	0	1	0	0	0
	C7	49	_	0	1	0	0	1	0	0	1
	C8	4A	_	0	1	0	0	1	0	1	0
	Response										
	Read successful	_	C2/42	1/0	1	0	0	0	0	1	0
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Control byte	00	→ table 26								
2	Counter relay setpoint (low byte)	00	→ page 111								
3	Counter relay setpoint (high byte)	00									

Table 26: Byte 1: control byte

Meaning	Bit							
	7	6	5	4	3	2	1	0
n.c.			0	0	0	0	0	0
Does not appear in the parameter menu		1						
Appears in the parameter menu		0						
Execute (is being processed in the circuit diagram)	1							

Value $80_{hex} = 10000000_{bin}$:

The setpoint of the counter relay is set and appears in the parameter menu.

Setpoint value (byte 2 and byte 3)

These two bytes determine the setpoint of the counter relay. The setpoint can lie within the value range 0 to 9999_{dec}. In order to determine the setpoint, you need to convert the 16-bit hexadecimal low and high value into the decimal format.

Example:

 $\begin{array}{ll} \text{High value:} & 10_{\text{hex}} \\ \text{Low value:} & \text{DE}_{\text{hex}} \\ 10\,\text{DE}_{\text{hex}} = & 4318_{\text{dec}} \end{array}$

Timing relays T1 – T8: read actual value (time base, actual value, switch function)

Byte	Meaning	Value (he	ex), sent by	Bit							
Dyte	weaming	Master	Slave	7	6	5	1	3	2	1	0
		Master	Slave	,			4	<u> </u>			
0	Command: Read										
	T1	2B	_	0	0	1	0	1	0	1	1
	T2	2C	-	0	0	1	0	1	1	0	0
	T3	2D	_	0	0	1	0	1	1	0	1
	T4	2E	-	0	0	1	0	1	1	1	0
	T5	2F	-	0	0	1	0	1	1	1	1
	T6	30	_	0	0	1	1	0	0	0	0
	T7	31	_	0	0	1	1	0	0	0	1
	T8	32	-	0	0	1	1	0	0	1	0
	Response										
	Read successful	-	C2/42	1/0	1	0	0	0	0	1	0
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Control byte	00	→ table 27								
2	Time actual value (low byte)	00	→ page 114								
3	Time actual value (high byte)	00									
4	Random value	00	→ page 114								
5 – 6		00	00								

Table 27: Byte 1: control byte

Meaning	Bit							
	7	6	5	4	3	2	1	0
On-delayed						0	0	0
Off-delayed						0	0	1
On-delayed with random switching						0	1	0
Off-delayed with random switching						0	1	1
Single pulse						1	0	0
Flashing						1	0	1
Time base "s"				0	0			
Time base "M:S"				0	1			
Time base "H:M"				1	0			
n.c.			0					
Appears in the parameter menu		0						
Does not appear in the parameter menu		1						
Timing relay not processed by operating system	0							
Timing relay processed by operating system	1							

Actual value (byte 2 and byte 3)

These two bytes determine the actual value of the timing relay. The actual value also depends on the set time base. When the control byte is set to a seconds time base, the low value represents the SECONDS and the high value the MINUTES. The maximum range of return values for each byte is 0 to $59_{\rm dec}$ ($38_{\rm hex}$). This produces the following table:

Table 28: Byte 2 to 3: time actual value

Time base	Low value	High value
Millisecond	0 to 59 (10 ms)	0 to 59 s
Seconds	0 to 59 s	0 to 59 min
Minute	0 to 59 min	0 to 59 h

Example:

Low value 11_{hex}: Equivalent to 17 s, time base in [s]. High value 2D_{hex}: Equivalent to 45 min, time base in [s]

Random value (byte 4)

easy sets a random delay time between zero and the defined setpoint for relays operating with random switching characteristics. This setpoint time is specified at this byte in hexadecimal format.

The master initiates the command for reading timing relay T1:

Byte	Meaning	Valu	Bit							
		e (hex)	7	6	5	4	3	2	1	0
0	Command: T1	2B	0	0	1	0	1	0	1	1
1 – 3		00								

The slave responds with the following values:

Byte	Meaning	Valu	Bi	t						
		e (hex)	7	6	5	4	3	2	1	0
0	Response: Read successful	C2	1	1	0	0	0	0	1	0
1	Trigger coil activated, M:S time base, on-delayed, Parameter display +	\rightarrow	1	0	0	0	1	0	0	0
2	Time actual value (low byte)	10	0	0	0	1	0	0	0	0
3	Time actual value (high byte)	0E	0	0	0	0	1	1	1	0

Value Set time =
$$0E10_{hex} = 3600$$

3600 s = 60:00 M:S

Timing relays T1 – T8: write parameters (time base, setpoint, switch function)

Byte	Meaning	Value (hex), se	nt by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command: Write										
	T1	01	_	0	0	0	0	0	0	0	1
	T2	02	_	0	0	0	0	0	0	1	0
	T3	03	_	0	0	0	0	0	0	1	1
	T4	04	_	0	0	0	0	0	1	0	0
	T5	05	_	0	0	0	0	0	1	0	1
	T6	06	_	0	0	0	0	0	1	1	0
	T7	07	_	0	0	0	0	0	1	1	1
	T8	08	_	0	0	0	0	1	0	0	0
	Response										
	Write successful	_	C1/41	1/0	1	0	0	0	0	0	1
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Control byte	→ table 29	Invalid								
2	Low setpoint value	→ page 119	00								
3	High setpoint value										
4-6		00	00								

Time values over 60s are converted to minutes. Time values over 60 min. are converted to hours. Time values over 24 h are converted to days.

The value range of the times and the timing relay setpoint are part of an "*.eas file". If these values are changed, the original *.eas file will no longer match the file in EASY6..

Remember this characteristic when uploading, downloading or comparing "easy" circuit diagrams with EASY-SOFT.

When downloading from the PC the latest version of the "*.eas" is overwritten.

The comparison shows that the circuit diagrams are not identical.

Value range of the time values

- "S" 00.00 to 99.99
- "M:S" 00:00 to 99:59 (M = 00 to 99, S = 00 to 59)
- "H:M" 00:00 to 99:59 (H = 00 to 99, M = 00 to 59)

Only the bytes reserved for the required time base should be used.

Table 29: Byte 1: control byte

Meaning	Bit							
	7	6	5	4	3	2	1	0
On-delayed						0	0	0
Off-delayed						0	0	1
On-delayed with random switching						0	1	0
Off-delayed with random switching						0	1	1
Single pulse						1	0	0
Flashing						1	0	1
Time base "s"				0	0			
Time base "M:S"				0	1			
Time base "H:M"				1	0			
n.c.			0					
Does not appear in the parameter menu		1						
Appears in the parameter menu		0						
Execute	1							

Value $^{'}89_{hex} = 1000\,1001_{bin.}$ The timing relay operates with off-delay and time base in [s].

Timing relay, writing the setpoint (byte 2 and byte 3)

Bytes 2 and 3 determine the setpoint for the timing relay. The setpoint depends on the selected time base. When the time base of the control byte is set to seconds, the low value is based on seconds and the high value on the next higher time base (minute). The value range for each byte in this case is 0 to $59_{\rm dec}$ ($38_{\rm hex}$). This produces the following table:

Time base	Low value	High value
Milliseconds	0 to 59 (10 ms)	0 to 59 s
Seconds	0 to 59 s	0 to 59 min
Minute	0 to 59 min	0 to 59 h

Example:

Low value 11_{hex} : Equivalent to 17 s, at a set time base of seconds

High value $2D_{\text{hex}}$: Equivalent to 45 min, at a set time base of seconds

Time switch \$1 - \$4: read actual values (channel, ON time, OFF time)

Byte	Meaning	Value (he	ex), sent by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	©1 channel A	4B	_	0	1	0	0	1	0	1	1
	@ 1 channel B	4C	_	0	1	0	0	1	1	0	0
	@ 1 channel C	4D	_	0	1	0	0	1	1	0	1
	@ 1 channel D	4E	_	0	1	0	0	1	1	1	0
	©2 channel A	4F	_	0	1	0	0	1	1	1	1
	@2 channel B	50	_	0	1	0	1	0	0	0	0
	©2 channel C	51	_	0	1	0	1	0	0	0	1
	©2 channel D	52	_	0	1	0	1	0	0	1	0
	•3 channel A	53	_	0	1	0	1	0	0	1	1
	@3 channel B	54	_	0	1	0	1	0	1	0	0
	©3 channel C	55	_	0	1	0	1	0	1	0	1
	•3 channel D	56	_	0	1	0	1	0	1	1	0
	•4 channel A	57	_	0	1	0	1	0	1	1	1
	•4 channel B	58	_	0	1	0	1	1	0	0	0
	•4 channel C	59	_	0	1	0	1	1	0	0	1
	@ 4 channel D	5A	_	0	1	0	1	1	0	1	0
	Response										
	Read successful	_	C2/42	1/0	1	0	0	0	0	1	0
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Time switch control byte	00	→ table 30								
2	Channel control byte	00	→ table 31								
3	Minute (switch point ON)	00	→ page 123								
4	Hour (switch point ON)	00									
5	Minute (switch point OFF)	00									
6	Hour (switch point OFF)	00									

Table 30: Byte 1: time switch control byte

Meaning	Bit							
	7	6	5	4	3	2	1	0
Not being processed	0	0	0	0	0	0	0	0
Executed (is being processed in the circuit diagram)	1	0	0	0	0	0	0	0

Value $80_{hex} = 10000000_{bin}$:

The addressed time switch is used in the circuit diagram.

Channel control byte

(Weekday: starting/ending, parameter menu display) Each channel of a 7-day time switch is assigned a control byte that defines the start/stop conditions. The table below shows the precise structure of this control byte.

Table 31: Byte 2: channel control byte

Meaning	Bit							
	7	6	5	4	3	2	1	0
ON day								
None set						0	0	0
Monday						0	0	1
Tuesday						0	1	0
Wednesday						0	1	1
Thursday						1	0	0
Friday						1	0	1
Saturday						1	1	0
Sunday						1	1	1

Meaning	Bit							
	7	6	5	4	3	2	1	0
OFF day								
None set			0	0	0			
Monday			0	0	1			
Tuesday			0	1	0			
Wednesday			0	1	1			
Thursday			1	0	0			
Friday			1	0	1			
Saturday			1	1	0			
Sunday			1	1	1			
Appears in the parameter menu								
No	1	0						
Yes	0	0						

Value $31_{hex} = 00110001_{bin}$:

The previously selected channel X of 7-day time switch Y is active Monday through Saturday.

Switching times (byte 3 to byte 6)

The table below shows the bytes which determine the precise ON and OFF times of a channel. The resolution is in seconds.

ON time		OFF time	
Byte 3:	Byte 4:	Byte 5:	Byte 6:
Minute	Hour	Minute	Hour
ON	ON	OFF	OFF
00 to 3B _{hex}	00 to 17 _{hex}	00 to 3B _{hex}	00 to 17 _{hex}
(00 to 59 _{dec})	(00 to 23 _{dec})	(00 to 59 _{dec})	(00 to 23 _{dec})

easy returns hexadecimal values. You may have to convert the corresponding values into decimal format.

Example:

Byte	Value	Description
0	42 _{hex}	The read request has been executed. Data follows.
1	80 _{hex}	The addressed time switch is used in the circuit diagram.
2	31 _{hex} (see above)	Day: Monday through Saturday The channel appears in the parameter menu
3	00 _{hex}	ON: 19:00
4	13 _{hex}	
5	1E _{hex}	OFF: 06:30
6	06 _{hex}	

Time switch ⊕1 – ⊕4: write setpoints (channel, ON time, OFF time)

Byte	Meaning	Value (hex), s	ent by	Bit							
		Master	Slave	7	6	5	4	3	2	1	0
0	Command										
	©1 channel A	12	_	0	0	0	1	0	0	1	0
	@1 channel B	13	_	0	0	0	1	0	0	1	1
	@1 channel C	14	_	0	0	0	1	0	1	0	0
	•1 channel D	15	_	0	0	0	1	0	1	0	1
	©2 channel A	16	_	0	0	0	1	0	1	1	0
	©2 channel B	17	_	0	0	0	1	0	1	1	1
	©2 channel C	18	_	0	0	0	1	1	0	0	0
	©2 channel D	19	_	0	0	0	1	1	0	0	1
	©3 channel A	1A	_	0	0	0	1	1	0	1	0
	©3 channel B	1B	_	0	0	0	1	1	0	1	1
	©3 channel C	1C	_	0	0	0	1	1	1	0	0
	©3 channel D	1D	_	0	0	0	1	1	1	0	1
	© 4 channel A	1E	_	0	0	0	1	1	1	1	0
	@ 4 channel B	1F	_	0	0	0	1	1	1	1	1
	© 4 channel C	20	_	0	0	1	0	0	0	0	0
	@ 4 channel D	21	_	0	0	1	0	0	0	0	1
	Response										
	Write successful	-	C1/41	1/0	1	0	0	0	0	0	1
	Command rejected	_	C0/40	1/0	1	0	0	0	0	0	0
1	Control byte (Day beginning/end)	→ page 125	00								
2	Minute (switch point ON)	→ page 127	00								
3	Hour (switch point ON)		00								
4	Minute (switch point OFF)		00								
5	Hour (switch point OFF)		00								
6	Not used										

Keep within the value range: the values of minute and hour of the switch points are part of an EASY-SOFT file (*.eas). If these values are changed, the original "*.eas file" will no longer match the file in EASY6.. the file in EASY6..

Remember this characteristic when uploading, downloading or comparing "easy" circuit diagrams with EASY-SOFT. When downloading from the PC the latest version of the "*.eas" is overwritten. The comparison shows that the circuit diagrams are not identical.

Control byte (Weekday: starting/ending, parameter menu display)

Each channel of a 7-day time switch is assigned a control byte that defines the start/stop conditions. The table below shows the precise structure of this control byte.

Meaning Bit 7 6 5 4 3 2 1 0 ON day None set 0 0 0 Monday 1 Tuesday 1 0 Wednesday 0 1 1 0 0 Thursday 0 1 Friday Saturday 1 0 1 1 Sunday

Table 32: Byte 1: Control byte

Meaning	Bit							
	7	6	5	4	3	2	1	0
OFF day								
None set			0	0	0			
Monday			0	0	1			
Tuesday			0	1	0			
Wednesday			0	1	1			
Thursday			1	0	0			
Friday			1	0	1			
Saturday			1	1	0			
Sunday			1	1	1			
Appears in the parameter menu								
No	1	0						
Yes	0	0						

Value $31_{hex} = 00110001_{bin}$:

The previously selected channel X of 7-day time switch Y is active Monday through Saturday.

Writing the ON and OFF time (byte 2 to byte 5)

The table below shows the bytes which determine the precise ON and OFF times of a channel. The resolution is in seconds.

ON time		OFF time			
Byte 2	Byte 3	Byte 4	Byte 5		
Minute	Hour	Minute	Hour		
ON	ON	OFF	OFF		
00 to 3B _{hex}	00 to 17 _{hex}	00 to 3B _{hex}	00 to 17 _{hex}		
(00 to 59 _{dec})	(00 to 23 _{dec})	(00 to 59 _{dec})	(00 to 23 _{dec})		

You must convert all decimals into hexadecimal values and enter them accordingly.

Example:

Description	Command/byte	Value
Data of channel A of time switch 4:	Command/byte 0	1E _{hex}
Day: Monday through Saturday Channel appears in the parameter menu	Byte 1	31 _{hex} (see above)
ON: 19:00	Byte 2	00 _{hex}
	Byte 3:	13 _{hex}
OFF: 06:30	Byte 4	1E _{hex}
	Byte 5:	06 _{hex}

The master initiates the command to write the following data to channel C of ©2:

• Day: Tuesday (010) to Saturday (110)

ON: 10:00OFF: 17:30

• Switch point ON < OFF (0)

• Channel does not appear in the Parameters menu (1)

Byte	Meaning	Value	Bi	t						
			7	6	5	4	3	2	1	0
0	Command: @2 channel C	18 _{hex}	0	0	0	1	1	0	0	0
1	Weekday, Parameter menu display	B2 _{hex}	1	0	1	1	0	0	1	0
2	Minute (switch point ON)	00 _{bcd}	0	0	0	0	0	0	0	0
3	Hour (switch point ON)	10 _{bcd}	0	0	0	1	0	0	0	0
4	Minute (switch point OFF)	30 _{bcd}	0	0	1	1	0	0	0	0
5	Hour (switch point OFF)	17 _{bcd}	0	0	0	1	0	1	1	1
6	Not used									

The slave responds with the following telegram:

Byte	Meaning	Value	Bi	t						
			7	6	5	4	3	2	1	0
0	Response: Write successful	41 _{hex}	0	1	0	0	0	0	0	1
1 – 6		00								

9 SDO – Control Commands for easy700

The object dictionary entries Status (3020_{hex}), Command (3021_{hex}) and Response (3022_{hex}) represent the interface for extended data exchange with easy700 on the CANopen communication bus. This allows you to transfer services from the following areas:

- "Read/write date and time" (page 130)
- "Read/write image data" (page 134)
- "Read/write function block data" (page 155).

The SDO-CANopen protocol (→ page 60) is required in order to ensure the safe exchange of data via CANopen from master to slave and vice versa.

Attention!

Whilst a control command is being executed, the input and output data will remain in the state before the control command was called. Only after the control command data exchange has been completed, will the I/O data be refreshed.

Caution!

Only those values specified for the command code should be used. Check the values that you write in order to avoid malfunctions.

Read/write date and time

Please also note the relevant description of the real-time clock provided in the easy700 manual (AWB2528-1508GB).

Byte	Meaning	Value (hex)	, sent by
		Master	Slave
0	Command		
	Read	93	_
	Write	В3	_
	Response		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	_	C0
1	Len	05	05
2	Index	$0 - 2^1$	$0 - 2^1$
3 – 7	Data 1 – 5	depending or → table 33	n index,

¹⁾ $0 = \text{Time/date}, \rightarrow \text{table } 33$

^{1 =} Summer time, \rightarrow table 34

 $^{2 = \}text{Winter time}, \rightarrow \text{table 35}$

Table 33: Index 0 – date and time of real-time clock

Byte	Contents	Operand		Value (hex)
3	Data 1	Hour	0 to 23	0x00 to 0x17h
4	Data 2	Minute	0 to 59	0x00 to 0x3Bh
5	Data 3	Day	Day (1 to 28; 29, 30, 31; depending on month and year)	0x01 to 0x1Fh
6	Data 4	Month	1 to 12	0x01 to 0x0Ch
7	Data 5	Year	0 to 99 (corresponds to 2000-2099)	0x00 to 0x63h

Table 34: Index 1 – Summer time

Byte	Content s		Value (hex)
3	Data 1	Area	
		None	00
		Rule	01
		Automatic EU	02
		Automatic GB	03
		Automatic US	04
for "Area	" = "Rule":		
4	Data 2	Summer time	→ table 36
5	Data 3	switching rule	
6	Data 4		
7	Data 5		

Table 35: Index 2 – Winter time (only valid if Area = "Rule" selected)

Byte	Contents		Value (hex)
3	Data 1	Area = Rule	01
4 – 7	Data 2 – 5	Winter time switching rule	→ table 36

Switching rule bit array

Please also read the detailed description in the easy700 manual (AWB2528-1508GB).

The following table shows the composition of the corresponding data bytes.

on the last on the third on the fourth on the second 4. ö 5: ÿ 5. Thu Data 2 1: Mo We 'n Sa Su Day ᆂ 4 ö 5: ÷. 4. ij. .: 0: after the month before the Rule_2 9 5: ö 6 0 to 30 9 Day Ξ Data 3 12 13 Month 0 to 11 15 14 16 Hour: 0 to 23 9 Data 4 19 Time of time change 21 20 22 23 Minute: 0 to 59 24 Los Immediate Delivers Switching rule bit array

Table 36: Switching rule bit array

Data 5

Difference

0: 0:30h
0: 0:30h
1: 1:00h
2: 1:30h
3: 2:00h
3: 2:00h
5: 3:00h
5: 3:00h

Read/write image data

Please also observe the relevant description of possible image data provided in the easy700 manual (AWB2528-1508GB) or in the EASY-SOFT Help. The section "General notes on working with image data" on page 91 also applies to easy700.

Overview

Operands	Meaning	Read/ write	Type (hex)	Page
A1 – A16	"Analog value comparators/threshold comparators: A1 – A16"	Read	8C	135
C1 – C16	"Counters: C1 – C16"	Read	EE	136
D1 – D16	"Text function blocks: D1 – D16"	Read	94	137
I1 – I16	"Local inputs: I1 – I16"	Read	84	138
IA1 – IA4	"Local analog inputs: IA1 – IA4"	Read	8C	139
M1 – M16, N1 – N16	"Markers: M1 – M16/N1 – N16"	Write	86/87	141
M1 – M16, N1 – N16	"Markers: M1 – M16/N1 – N16"	Read	86/87	143
01 – 04	"Operating hours counters: O1 – O4"	Read	EF	145
P1 – P4	"Local P buttons: P1 – P4"	Read	8A	146
Q1 – Q8	"Local outputs: Q1 – Q8"	Read	85	148
R1 – R16/ S1 – S8	"Inputs/outputs of EASY-LINK: R1 — R16/ S1 — S8"	Read	88/89	149
T1 – T16	"Timing relays: T1 – T16"	Read	ED	151
Y1 – Y4	"Year time switch: Y1 – Y8"	Read	91	152
Z1 – Z3	"Master reset: Z1 – Z3"	Read	93	153
H1 – H4	7-day time switch: @ 1 – @ 8	Read	90	154

Analog value comparators/threshold comparators: A1 – A16

The following commands are used to read the logic state of the individual analog value comparators A1 to A16.

Byte	Meaning	Value (hex), se	ent by		
		Master	Slave		
0	Command: Read	88	_		
	Response:				
	Read successful	_	C2		
	Command rejected	-	C0 ¹		
1	Len	01	01		
2	Туре	8C	8C		
3	Index	00	00		
4	Data 1 (Low Byte)	00	→ table 37		
5	Data 2 (Low Byte)	00	→ table 37		
6 – 7	Data 3 – 4	00	00		

¹⁾ Possible causes → page 173

Table 37: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
A1									0/1
A2								0/1	
A8		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
Data 2 A9	Bit	7	6	5	4	3	2	1	0 0/1
	Bit	7	6	5	4	3	2	0/1	
A9	Bit	7	6	5		3	2		

Counters: C1 - C16

The following commands are used to read the logic state of the individual counters C1 - C16.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	88	_
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре	EE	EE
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 47
5	Data 2 (Low Byte)	00	→ table 47
6 – 7	Data 3 – 4	00	00

¹⁾ Possible causes → page 173

Table 38: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
C1									0/1
C2								0/1	
C8		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
Data 2	Bit	7	6	5	4	3	2	1	0 0/1
	Bit	7	6	5	4	3	2	0/1	
C9	Bit	7	6	5		3	2		

Text function blocks: D1 - D16

The following commands are used to read the logic state of the individual text function blocks (D markers).

Byte	Meaning	Value (hex), sent by				
		Master	Slave			
0	Command: Read	88	-			
	Response:					
	Read successful	_	C2			
	Command rejected	_	C0 ¹			
1	Len	01	01			
2	Туре	94	94			
3	Index	00	00			
4	Data 1 (Low Byte)	00	→ table 39			
5	Data 2 (High Byte)	00	→ table 39			
6 – 7	Data 3 – 4	00	00			

¹⁾ Possible causes → page 173

Table 39: Byte 4 to 5: Data 1 to 2

Tubic 55.	Dyt	C 1 10	, J. L	outu	10 2				
Data 1	Bit	7	6	5	4	3	2	1	0
D1									0/1
D2								0/1	
D8		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
D9									0/1
D10								0/1	
D16		0/1							

Local inputs: I1 - I16

This command string enables you to read the local inputs of the easy700 basic unit. The relevant input word is stored in Intel format.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	_	C2
	Command rejected	-	C0 ¹⁾
1	Len	02	02
2	Туре	84	84
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 40
5	Data 2 (High Byte)	00	→ table 40
6 – 7	Data 3 – 4	00	00

¹⁾ Possible causes → page 173

Table 40: Byte 4 to 5: Data 1 to 2

Data 1	Di+	7	6	5	1	2	2	1	0
Data 1	DIL		U	<u> </u>	4	3			U
11									0/1
12								0/1	
18		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
Data 2 19	Bit	7	6	5	4	3	2	1	0
	Bit	7	6	5	4	3	2	0/1	
19	Bit	7	6	5		3	2		

Local analog inputs: IA1 - IA4

The analog inputs on the easy700 basic unit (I7, I8, I11, I12) can be read directly via CANopen. The 16-bit value is transferred in Intel format (Low Byte first).

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	_	C2
	Command rejected	-	C0 ¹
1	Len	02	02
2	Туре	8C	8C
3	Index	$00 - 03^2$	$00 - 03^2$
4	Data 1 (Low Byte)	00	→ table 41
5	Data 2 (High Byte)	00	→ table 41
6 – 7	Data 3 – 4	00	00

- 1) Possible causes → page 173
- 2) 00 = Analog input 17
 - 01 = Analog input 18
 - 02 = Analog input I11
 - 03 = Analog input I12

A voltage signal is present at analog input 1. The required telegrams for reading the analog value are as follows:

Table 41: Example telegram for reading the value at the analog input

Byte	Meaning	Value (hex), s	ent by
		Master	Slave
0	Command: Read	88	_
	Response: Read successful	_	C2
1	Len	02	02
2	Туре	8C	8C
3	Index	02 ¹	02 ¹
4	Data 1	00	4B
5	Data 2	00	03
6	Data 3	00	00
7	Data 4	00	00
-			

^{1) 02 =} Analog input I11

Byte 4 – Data 1 (Low Byte): 4B_{hex} Byte 5 – Data 2 (High Byte): 03_{hex}

 \rightarrow corresponding 16-bit value: 034B_{hex} = 843

The value 843 corresponds to the 10 bit value of the analog converter. The following conversion is required for the actual analog value:

$$\frac{10 \text{ V}}{1023} \times \frac{10 \text{ bit}}{\text{value}} = > \frac{10 \text{ V}}{1023} \times 843 = 8.24 \text{ V}$$

Write markers: M1 - M16/N1 - N16

Byte	Meaning	Value (hex), s	ent by
		Master	Slave
0	Command: Write	8C	-
	Response:		
	Write successful	_	C1
	Command rejected	-	CO ¹
1	Len	01	01
2	Type ²		
	With M marker	86	86
	With N marker	87	87
3	Index ²	00 – 0F	00 – 0F
4	Data 1 (Low Byte) ³	00/01	00/01
5 – 7	Data 2 – 4	00	00

- 1) Possible causes → page 173
- There are 16 M markers and 16 N markers. The markers are addressed by Type and Index:Use Type to select the M or N marker.Use Index to select the marker number.
- 3) The marker is set if a value is written to the data byte that does not equal zero. The marker is reset accordingly if the value 0 is written to data byte Data 1.

Example: Marker M13 is set.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Write	8C	-
	Response:		
	Write successful	_	C1
	Command rejected	_	C0 ¹
1	Len	01	01
2	Туре		
	M marker	86	86
3	Index	0C	0C
4	Data 1	01	00
5 – 7	Data 2 – 4	00	00

¹⁾ Possible causes → page 173

Read markers: M1 - M16/N1 - N16

Unlike the write operation, the marker read operation reads the entire marker area of a particular marker type (M or N) is read.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	_	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре		
	M marker	86	86
	N marker	87	87
3	Index ²	00	00
4	Data 1 (Low Byte)	00	→ table 42
5	Data 2 (Low Byte)	00	→ table 42
6 – 7	Data 3 – 4	00	00

- 1) Possible causes → page 173
- There are 16 M markers and 16 N markers. The markers are addressed by Type and Index: Use Type to select the M or N marker. Use Index to select the marker number.

Table 42: Byte 4 to 5: Data 1 to 2

Data	1	Bit	7	6	5	4	3	2	1	0
M	N									
M1	N1									0/1
M2	N2								0/1	
M8	N8		0/1							
Data	2	Bit	7	6	5	4	3	2	1	0
M9	N9									0/1
M10	N10								0/1	
	-									
M16	N16		0/1							

The N markers are read:

Meaning	Value (hex), sent by				
	Master	Slave			
Command: Read	88	_			
Response:					
Read successful	_	C2			
Command rejected	-	CO ¹			
Len	01	01			
Туре					
N marker	87	87			
Index	00	00			
Data 1 (Low Byte)	00	04			
Data 2 (Low Byte)	00	84			
Data 3 – 4	00	00			
	Command: Read Response: Read successful Command rejected Len Type N marker Index Data 1 (Low Byte) Data 2 (Low Byte)	Command: Read 88 Response: Read successful — Command rejected Len 01 Type N marker 87 Index 00 Data 1 (Low Byte) 00 Data 2 (Low Byte) 00			

¹⁾ Possible causes → page 173

The markers N3, N11 and N16 are set.

Operating hours counters: 01 - 04

The following commands are used to read the logic state of the operating hours counters O1 - O4.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	88	_
	Response:		
	Read successful	_	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре	EF	EF
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 43
5 – 7	Data 2 – 4	00	00

¹⁾ Possible causes → page 173

Table 43: Byte 4: Data 1

Data 1	Bit	7	6	5	4	3	2	1	0
01									0/1
02								0/1	
03							0/1		
04						0/1			

Local P buttons: P1 - P4

The local P buttons are the display cursor buttons of the easy700 basic unit. You can scan the buttons in both RUN and STOP mode.

Ensure that the P buttons are also activated via the System menu (in the basic unit).

Only one byte has to be transferred for the P buttons.

Byte	Meaning	Value (hex), sent by				
		Master	Slave			
0	Command: Read	88	_			
	Response:					
	Read successful	-	C2			
	Command rejected	-	C0 ¹			
1	Len	01	01			
2	Туре	8A	8A			
3	Index	00	00			
4	Data 1 (Low Byte)	00	→ table 44			
5 – 7	Data 2 – 4	00	00			

¹⁾ Possible causes → page 173

Table 44: Byte 4: Data 1

Data 1	Bit	7	6	5	4	3	2	1	0
P1									0/1
P2								0/1	
P3							0/1		
P4						0/1			
_					0				
_				0					
_			0						
_		0							

Data $1 = 2_{hex} \rightarrow P3$ is active.

Local outputs: Q1 - Q8

The local outputs can be read directly via the CANopen fieldbus.

Telegram structure

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	88	_
	Response:		
	Read successful	_	C2
	Command rejected	-	C0 ¹⁾
1	Len	01	01
2	Туре	85	85
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 45
6 – 7	Data 2 – 4	00	00

¹⁾ Possible causes → page 173

Table 45: Byte 4: Data 1

Data 1	Bit	7	6	5	4	3	2	1	0
Q1									0/1
Q2								0/1	
Q8		0/1							

Example:

Data $1 = 52_{hex} \rightarrow Q2$, Q5 and Q7 are active.

Inputs/outputs of EASY-LINK: R1 - R16/S1 - S8

This service allows you to read the local R and S data and the data of the NET stations (1 - 8) transferred via EASYLINK, again from the relevant easy700 image.

Byte	Meaning	Value (hex), s	ent by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹⁾
	Len	01	01
	Len	UI	UI
2	Type		
	for R data	88	88
	for S data	89	89
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 46
5	Data 2 (Low Byte)	00	→ table 46
6 – 7	Data 3 – 4	00	00

¹⁾ Possible causes → page 173

Table 46: Byte 5 to 6: Data 1 to 2

Data	1	Bit	7	6	5	4	3	2	1	0
RW	SW									
R1	S1									0/1
R2	S2								0/1	
R8	S8		0/1							
Data	2	Bit	7	6	5	4	3	2	1	0
R9	_									0/1
R10	_								0/1	
	_									
R16	-		0/1							

Timing relays: T1 - T16

The following commands are used to read the logic state of the individual timers T1 - T16.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	_	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре	ED	ED
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 47
5	Data 2 (Low Byte)	00	→ table 47
6 – 7	Data 3 – 4	00	00

¹⁾ Possible causes → page 173

Table 47: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
T1									0/1
T2								0/1	
T8		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
T9									0/1
T10								0/1	
110									

Year time switch: Y1 - Y8

The following commands are used to read the logic state of the individual year time switches.

Telegram structure

Byte	Meaning	Value (hex), so	ent by
		Master	Slave
0	Command: Read	88	-
	Response:		
	Read successful	-	C2
	Command rejected	-	C0 ¹
1	Len	01	01
2	Туре	91	91
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 48
5 – 7	Data 2 – 4	00	00

¹⁾ Possible causes → page 173

Table 48: Byte 4: Data 1

	- , -			•					
Data 1	Bit	7	6	5	4	3	2	1	0
HY1									0/1
HY2								0/1	
HY3							0/1		
HY4						0/1			
HY5					0				
HY6				0					
HY7			0						
HY8		0							

Example:

Data $1 = 1_{hex} \rightarrow HY2$ is active

Master reset: Z1 – Z3
Telegram structure

Byte	Meaning	Value (hex), se	ent by	
		Master	Slave	
0	Command: Read	88	-	
	Response:			
	Read successful	-	C2	
	Command rejected	-	C0 ¹	
1	Len	01	01	
2	Туре	93	93	
3	Index	00	00	
4	Data 1 (Low Byte)	00	→ table 49	
5 – 7	Data 2 – 4	00	00	

¹⁾ Possible causes → page 173

Table 49: Byte 4: Data 1

Data 1	Bit	7	6	5	4	3	2	1	0
Z1 for Q outputs									0/1
Z2 for M markers								0/1	
Z3 for outputs and markers							0/1		
		0	0	0	0	0			

7-day time switch: $\bar{\Theta}1 - \bar{\Theta}8$

The following commands are used to read the logic state of the individual 7-day time switches.

Telegram structure

Byte	Meaning	Value (hex), se	sent by		
		Master	Slave		
0	Command: Read	88	_		
	Response:				
	Read successful	-	C2		
	Command rejected	-	C0 ¹		
1	Len	01	01		
2	Туре	90	90		
3	Index	00	00		
4	Data 1 (Low Byte)	00	→ table 50		
5 – 7	Data 2 – 4	00	00		

¹⁾ Possible causes → page 173

Table 50: Byte 4: Data 1

Data 1	Bit	7	6	5	4	3	2	1	0
HW1									0/1
HW2								0/1	
HW3							0/1		
HW4						0/1			
HW5					0				
HW6				0					
HW7			0						
HW8		0							

Example:

Data $1 = 2_{hex} \rightarrow 3$ is active.

Read/write function block data

Please also observe the relevant description of the function blocks provided in the easy700 manual (AWB2528-1508GB) or in the EASY-SOFT Help.

General notes

Always note the following when working with function blocks:

- The relevant data is transferred in Intel format. In other words, the first byte is the low byte (Byte 5) and the last byte (byte 8) the high byte.
- The maximum data length is 4 bytes. All values must be transferred in hexadecimal format.

Overview

Operands	Meaning	Read/ write	Type (hex)	Page
A1 – A16	"Analog value comparator/threshold comparator: A1 – A16"	Read/write	8D	156
C1 – C16	"Counter relays: C1 – C16"	Read/write	8F	159
01 – 04	"Operating hours counters: O1 – O4"	Read/write	92	162
T1 – T16	"Timing relays: T1 – T16"	Read/write	8E	164
Y1 – Y8	"Year time switch: Y1 – Y8"	Read/write	A2	167
G 1 – G 8	7-day time switch: 🛂 1 — 🗗 8	Read/write	A1	170

Analog value comparator/threshold comparator: A1 – A16

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command:		
	Read	89	-
	Write	8D	-
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	-	C0 ¹
1	Туре	8D	8D
2	Instance ²	00 – 0F	00 – 0F
3	Index	→ table 51	
4 – 7	Data 1 – 4	depending on in → table 52	dex,

¹⁾ Possible causes → page 173

²⁾ easy provides 16 analog comparators A1 to A16 for use as required. These can be addressed using the instance (0 - F).

Index Write Operand Read (hex) 00 Parameters → table 52 × 01 Control byte → table 53 X 11² 1ء 02 X Comparison value 1 12² ر1 03 X Comparison value 2 1ء F1² 04 Gain factor for I1 X $(I1 = F1 \times I1)$

F2²

OS²

 HY^2

Х

X

×

12

c¹

c¹

Table 51: Operand overview

Gain factor for I2

+ actual value at I1)

Switching hysteresis for

Offset for value I1 (I1 = OS

 $(12 = F2 \times 12)$

value 12

05

06

07

Example: $5327_{dec} = 14CF_{hex} \rightarrow Data 1 = 0xCF$, Data 2 = 0x14

¹⁾ The value can only be written if it is assigned a constant in the program.

²⁾ A 16-bit value is transferred in data bytes Data 1 – Data 2. It should be remembered that the low byte 1 is in Data 1 (Byte 5) and the high byte 2 (byte 8) in Data 2.

Table 52:	Index 00	 Parameters
-----------	----------	--------------------------------

							macr										
Meaning	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Appears in the parameter menu																	
Yes/no																	0/1
Compare																	
FB not used														0	0	0	
EQ (=)														0	0	1	
GE (≧)														0	1	0	
LE (≦)														0	1	1	
GT (>)														1	0	0	
LT (<)														1	0	1	
Use as constant	t and	the	refo	re ca	n be	wri	itten	to	•					•	•	•	
I1= Constant													0/1				
F1= Constant												0/1					
I2= Constant											0/1						
F2 = Constant										0/1							
OS = Constant									0/1								
HY = Constant								0/1									
Not used		0	0	0	0	0	0										

Data 1 (Byte 4) = 0xA3, Data 2 (Byte 5) = 0x03 \Rightarrow Resulting 16-bit value = $03A3_{hex}$

Meaning: HY, OS, F2, F1 are assigned a constant; I1, I2 are assigned to a variable such as I7, I8 C2...etc., appears in the Parameter menu;

The output of the analog value comparator is active for as long as the comparison (I1 \times F1) + OS = (I2 \times F2) + HY is fulfilled.

Table 53: Index 01 – Control byte

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		_	_	ı	_	-	1	-	Q1 ¹

¹⁾ Status 1 if comparison condition is fulfilled.

Counter relays: C1 – C16 Telegram structure

Byte	Meaning	Value (hex), sent	by			
		Master	Slave			
0	Command:					
	Read	89	-			
	Write	8D	-			
	Response:					
	Read successful	_	C2			
	Write successful	-	C1			
			1			
	Command rejected	_	C0 ¹			
1	Туре	8F	8F			
2	Instance ²	00 – 0F	00 – 0F			
3	Index	→ table 54				
4 – 7	Data 1 – 4	depending on index, → table 55				

- 1) Possible causes → page 173
- 2) easy provides 16 counters C1 to C16 for use as required. These can be addressed using the instance (0 F).

Table 54: Operand overview

Index (hex)	Operand		Read	Write
00	Parameters → table 55		×	
01	Control byte → table 56		×	
02	Actual value	S1 ²	×	c ¹
03	Counter setpoint 2	S2 ²	×	c ¹

- 1) The value can only be written if it is assigned to a constant in the program.
- 2) A 16-bit value is transferred in data bytes Data 1 Data 2. It should be remembered that Data 1 is the low byte and Data 2 the high byte.

Table 55: Index 00 – Parameters

Meaning	Bit	7	6	5	4	3	2	1	0
Appears in the parameter menu									
Yes/no									0/1
Counter mode									
FB not used							0	0	
Up/down counter (N)							0	1	
High-speed up/down counter (H)							1	0	
Frequency counter (F)							1	1	
Use as constant and therefore	can k	e wi	rittei	n to					
Counter setpoint S1						0/1			
Unused bits		_	_	_	_				

Data 1 (Byte 4) = 0x07

Meaning:

The values appear in the Parameter menu. The counter is used in the mode of the frequency meter. The counter setpoint 1 is not assigned to a constant and cannot therefore be written to.

Table 56: Index 01 – Control byte

Data 1	Bit	7	6	5	4	3	2	1	0
FB output		_	-	-	-	C ⁴	RE ³	D ²	Q1 ¹

- 1) Switch contact
- 2) Count direction: 0 = up counting,1 = down counting
- 3) Reset, the timing relay is reset (reset coil)
- 4) Count coil, counts on every rising edge

Example: the actual value of C3 is to be read:

Byte	Meaning	Value (hex)), sent by
		Master	Slave
0	Command: Read	89	-
	Response: Read successful	_	C2
1	Туре	8F	8F
2	Instance	02	02
3	Index	02	02
4	Data1	00	12
5	Data 2	00	03
6	Data 3	00	00
7	Data 4	00	00

Explanation:

Data 1 = 12

Data 2 = 03

 \Rightarrow resulting 16-bit value = 0312_{hex} = 786_{dec}

Counter status = 786

Operating hours counters: 01 - 04

Byte	Meaning	Value (hex), ser	nt by			
		Master	Slave			
0	Command:					
	Read	89	_			
	Write	8D	_			
	Response:					
	Read successful	_	C2			
	Write successful	_	C1			
	Command rejected	_	C0 ¹			
1	Туре	92	92			
2	Instance ²	00 – 03	00 – 03			
3	Index	→ table 57				
4 – 7	Data 1 – 4	depending on index, → table 58				

- 1) Possible causes → page 173
- 2) easy provides 4 operating hours counters O1 to O4. These can be addressed using the instance (0 3).

Table 57: Operand overview

Index (hex)	Operand		Read	Write
00	Parameters → table 58		×	
01	Control byte → table 59		×	
02	Actual value	S1 ²	×	c ¹
03	Counter setpoint 2	S2 ²	×	c ¹

- 1) The value can only be written if it is assigned to a constant in the program.
- 2) A 32-bit value is transferred in data bytes Data 1 Data 4. It should be remembered that the Data 1 is the low byte and Data 4 the high byte.

Table 58: Index 00 – Parameters

Meaning	Bit	7	6	5	4	3	2	1	0
Appears in the parameter menu									
Yes/no									0/1
Use in the program									
Setpoint S1								0/1	
Unused bits		_	_	-	-	_	_		

Data 1 (Byte 4) = 0x01

Meaning:

The values appear in the Parameter menu.

Table 59: Index 01 – Control byte

Data 1	Bit	7	6	5	4	3	2	1	0
FB output		_	_	_	-	-	RE ³	EN ²	Q1 ¹

- 1) Switch contact
- 2) Enable, the timing relay is started (trigger coil)
- 3) Reset, the timing relay is reset (reset coil)

Example: Index 02/03

Transferred values: Data 1 0x21

Data 2 0x23 Data 3 0x40 Data 4 0x00

Resulting value: $00402321_{hex} = 4203297_{dec}$

Timing relays: T1 – T16
Telegram structure

Byte	Meaning	Value (hex), so	ent by		
		Master	Slave		
0	Command:				
	Read	89	-		
	Write	8D	_		
	Response:				
	Read successful	_	C2		
	Write successful	_	C1		
	Command rejected	_	C0 ¹		
1	Туре	8E	8E		
2	Instance ²	00 – 0F	00 – 0F		
3	Index	→ table 60			
4 – 7	Data 1 – 4	depending on ir → table 61	ndex,		

- 1) Possible causes → page 173
- 2) easy provides 16 timing relays T1 to T16 for use as required. These can be addressed using the instance (0 F).

Table 60: Operand overview

Index (hex)	Operand		Read	Write
00	Parameters → table 61		×	
01	Control byte → table 62		×	
02	Actual value 1	T	×	c ¹
03	Time setpoint 1	S1 ²	×	c ¹
04	Time setpoint 2	S2 ²	×	c ¹

- 1) The value can only be written if it is assigned to a constant in the program.
- A 16-bit value is transferred in data bytes Data 1 Data 2. It should be remembered that the low byte is in Data 1 and the high byte in Data 2.

Time setpoint S2

Table 61: Index 00 – Parameters

Table of Finance									
Meaning	Bit	7	6	5	4	3	2	1	0
Appears in the parameter menu									
Yes/no									0/1
Timer mode								•	
On-delayed						0	0	0	
Off-delayed						0	0	1	
On-delayed with random setpoint						0	1	0	
Off-delayed with random setpoint						0	1	1	
On and off delayed (two time setpoints)						1	0	0	
On and off delayed each with random setpoint (two time setpoints)						1	0	1	
Impulse transmitter						1	1	0	
Flashing relay (two time setpoints)						1	1	1	
Time base							•	•	
FB not used				0	0				
Millisecond: S				0	1				
Second: M:S				1	0				
Minute: H:M				1	1				
Use as constant and therefore can be written to									
Time setpoint S1			0/1						
			1		1				_

Example:

Data 1 (Byte 4) = 0xAC

Meaning:

The values appear in the Parameter menu. The time is used in the impulse transmitter mode with the Second time base. The time setpoint S1 is assigned a constant and the time setpoint S2 is assigned a variable such as I7, I8 C2...etc.

0/1

Table 62: Index 01 – Control byte

	Bit	7	6	5	4	3	2	1	0
FB input/output Data 3		-	-	-	-	ST ⁴	RE ³	EN ²	Q1 ¹

- 1) Switch contact
- 2) Enable, the timing relay is started (trigger coil)
- 3) Reset, the timing relay is reset (reset coil)
- 4) Stop, the timing relay is stopped (Stop coil)

The time setpoint 1 is to be read:

Byte	Meaning	Value (hex	κ), sent by
		Master	Slave
0	Command: Read	89	_
	Response: Read successful	_	C2
1	Туре	8E	8E
2	Instance	00	00
3	Index	03	03
4	Data1	00	4C
5	Data 2	00	06
6	Data 3	00	00
7	Data 4	00	00

Explanation:

Data 1 = 4C

Data 2 = 06

 \rightarrow resulting 16-bit value = 064C_{hex} = 1612_{dec}

Meaning depending on set time base:

millisecond	S	16120 ms	16,120 s
Seconds	M:S	1620 s	26:52 Minutes
Minute	H:M	1612 min	67:04 Hours

Year time switch: Y1 - Y8

Byte	Meaning	Value (hex), se	nt by
		Master	Slave
0	Command:		
	Read	89	-
	Write	8D	-
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	_	C0 ¹
1	Туре	A2	A2
2	Instance ²	00 – 07	00 – 07
3	Index	→ table 63	
4 – 7	Data 1 – 4	depending on inc → table 64	dex,

¹⁾ Possible causes → page 173

²⁾ easy provides 8 year time switches Y1 to Y8 for use as required. These can be addressed using the instance (0-7).

Table 63: Operand overview

Index (hex)	Operand	Read	Write
00	Parameters → table 64	×	
01	Control byte → table 65	×	
	Channel A	×	c ¹
11	Time point ON	×	c ¹
12	Time point OFF	×	c ¹
	Channel B	×	c ¹
21	Time point ON	×	c ¹
22	Time point OFF	×	c ¹
	Channel C	×	c ¹
31	Time point ON	×	c ¹
32	Time point OFF	×	c ¹
	Channel D	×	c ¹
41	Time point ON	×	c ¹
42	Time point OFF	×	c ¹

¹⁾ The value can only be written if it is assigned to a constant in the program.

Table 64: Index 00 – Parameters

M	eaning	Bit	7	6	5	4	3	2	1	0
Αŗ	pears in the pa	ram	eter	men	ı					
	Channel A									0/1
	Channel B								0/1	
	Channel C							0/1		
	Channel D						0/1			
Ur	used bits		ı	ı	-	_				

The switch points are transferred in data bytes Data 1 – Data 3.

Data 1 (Byte 4) = $0x03 \rightarrow$ The values of the year time switch of channel A and B in the parameter menu.

Table 65: Index 01 – Control byte

Data 1	Bit	7	6	5	4	3	2	1	0
FB output		_	_	_	_	_	_	_	Q1 ¹

1) Status 1, if the count condition is fulfilled.

Channel A, Index 11/12

Index 0x11 channel A ON time Index 0x12 channel A OFF time

Data 1 (Byte 4) – Day

Data 2 (Byte 5) - Month

Data 3 (Byte 6) – Year

Example:

The year time switch channel A is to be activated on the 21.04.2004.

Index = 0x11

Data 1 = 0x15

Data 2 = 0x04

Data 3 = 0x04

The year time switch channel B is to be deactivated on the 05.11.2012.

Index = 0x22

Data 1 = 0x05

Data 2 = 0x0B

Data 3 = 0x0C

7-day time switch: 91 – 98
Telegram structure

Byte	Meaning	Value (hex), sent b	ру
		Master	Slave
0	Command:		
	Read	89	-
	Write	8D	_
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command	_	C0 ¹
	rejected		
1	Туре	A1	A1
2	Instance ²	00 – 07	00 – 07
3	Index	→ table 66	→ table 66
4 – 7	Data 1 – 4	depending on index,	→ table 67

¹⁾ Possible causes → page 173

²⁾ easy provides 8 7-day time switches 91 to 98 for use as required. These can be addressed using the instance (0-7).

Table 66: Operand overview

Index (hex)	Operand	Read	Write
00	Parameters → table 67	×	
01	Control byte → table 68	×	
11	Channel Day on/off A	×	c ¹
12	On time	×	c ¹
13	Off time	×	c ¹
21	Channel Day on/off B	×	c ¹
22	On time	×	c ¹
23	Off time	×	c ¹
31	Channel Day on/off	×	c ¹
32	On time	×	c ¹
33	Off time	×	c ¹
41	Channel Day on/off D	×	c ¹
42	On time	×	c ¹
43	Off time	×	c ¹

¹⁾ The value can only be written if it is assigned to a constant in the program.

²⁾ A 16-bit value is transferred in data bytes Data 1 – Data 4. It should be remembered that Data 1 is the low byte and Data 2 the high byte.

Table 67: Index 00 - Parameters

Meaning	Bit	7	6	5	4	3	2	1	0
Appears in the pa	ram	eter	men	u					

	Channel A								0/1
	Channel B							0/1	
	Channel C						0/1		
	Channel D					0/1			
Unused bits		-	-	-	-				

Data 1 (Byte 4) = 0x03

Meaning:

The values of the WH.. 7-day time switch from channel A and B appear in the parameter menu.

Table 68: Index 01 – Control byte

Data 1	Bit	7	6	5	4	3	2	1	0
FB output		_	_	_	_	_	_	_	Q1 ¹

¹⁾ Status 1, if the count condition is fulfilled.

Channel A, Index 11/12/13

Index 0x11 channel A Weekday on/off

Data 1 (Byte 4) – Weekday on

Data 2 (Byte 5) - Weekday off

0x01 = Sunday ... 0x07 = Saturday

The 16-bit value equals 0x00 if the channel is not used.

Index 0x12 - On time (2 Byte)

Index 0x13 - Off time (2 Byte)

Data 1 (Byte 4) - Hour

Data 2 (Byte 5) – Minute

Example: On time at 13:43 p.m.

Data 1 = 0x0D

Data 2 = 0x2B

Analysis – error codes via EASY-LINK

The easy700 basic unit will return a defined error code in the event of an incorrectly selected operating mode or an invalid telegram. The error code transferred has the following structure:

Byte	Meaning	Slave transmits (value hex)
0	Response	
	Command rejected	CO
1	Туре	00
2	Instance	00
3	Index	00
4	Error code	→ table 69

Table 69: Error codes

Error code	Description
0x01	Unknown telegram transmitted.
0x02	Unknown object transmitted.
0x03	Unknown command transmitted.
0x04	Invalid instance transmitted.
0x05	Invalid parameter set transmitted.
0x06	An attempt was made to write to a variable that is not a constant.
0x0C	The device is in an invalid device mode. STOP \rightarrow RUN or RUN \rightarrow STOP
0x0D	Invalid display access. Exit the menu level so that the status display is showing in the display. The clock cannot be written to.
0xF0	Attempt made to control an unknown parameter.
0xF1	Impermissible value

10 SDO – Control Commands for easy800/MFD

The OD entries Status (3020_{hex}), Command (3021_{hex}) and Response (3022_{hex}) provide the interface for extended data exchange with easy800 and MFD on the CANopen communication bus. This allows you to transfer services from the following areas:

- Read/write date and time (page 177)
- Read/write image data (page 182)
- Read/write function block data (page 202).

The SDO-CANopen protocol (page 60) is required in order to ensure the safe exchange of data via CANopen from master to slave and vice versa.

Attention!

Whilst a control command is being executed, the input and output data will remain in the state before the control command was called. Only after the Control commands data exchange has been completed, will the I/O data be refreshed.

Caution!

Only those values specified for the command code should be used. Check the values that you write in order to avoid malfunctions.

Version history

The following table provides an overview of modifications and new features of the different easy800 device versions:

	easy800, device version					
Effect on easy-Link	From 02	From 04	From 05			
Support for complete PDO access						
R data writable	√	√	√			
S data readable	✓	√	√			
Support for complete SDO access						
Function blocks	-	CP, D, DB, GT,	MR, A, AR, BV, C, CF, CH, CI, CP, D, DB, GT, HW, HY, OT, PT, SC, T, BC, BT, DC, FT, LS, NC, PW, ST, VC			
Image data						
Read	-	IW, IA, ID, QW, M, MB, MW, N	QA, P, RW, SW, 1D			
Write	-	QW, QA, M, MB, MW, MD	M, MB, MW, MD			
Clock functions	-	√	√			
Rule option for winter/summer (DST) time change	-	-	√			

Read/write date and time

Please also note the relevant description of the real-time clock provided in the easy800 manual (AWB2528-1423GB).

Byte	Meaning	Value (hex), ser	nt by
		Master	Slave
0	Command		
	Read	93	_
	Write	B3	-
	Response		
	Read successful	-	C2
	Write successful	_	C1
	Command rejected	_	C0
1	Len	05	05
2	Index	00	00
3 – 7	Data 1 – 5		
	Read operation	00	→ table 70
	Write operation	→ table 70	00

Table 70: Byte 3 to 7: Data 1 to 5

Byte	Content	S	Value (hex)
3	Data 1	Hour (0 to 23)	00 – 17
4	Data 2	Minute (0 to 59)	00 – 3B
5	Data 3	Day (1 to 31; depending on month and year)	01 – 1F
6	Data 4	Month (1 to 12)	01 – 0C
7	Data 5	Year (0 – 99, corresponds to 2000 – 2099)	00 – 63

Winter/summer time, DST

Telegram structure

Durto	Manning	Value (hex), sent by				
Byte	Meaning	value (nex), sent by				
		Master	Slave			
0	Command					
	Read	93	-			
	Write	В3	_			
	Response					
	Read successful	_	C2			
	Write successful	-	C1			
	Command rejected	-	C0			
1	Len	05	05			
2	Index					
	Summer/winter time	01 → table 71	→ table 71			
	Winter time $(according to Area = Rule)^1$	02 → table 72	02 → table 72			
3 – 7	Data 1 – 5					
	Read operation	00	depending on index, → table 71, 72			
	Write operation	depending on index, → table 71, 72	00			

1) Detailed setting options for easy800/MFD from version 05

Value (hex) Byte Contents 3 Data 1 Area None 00 Manual 01 Automatic EU 02 Automatic GB 03 Automatic US 04 Rule¹ 05 For Area = Manual 4 Data 2 Set summer time day 00 - 3B1 to 28, 29, 30, 31 (depending on month and year) 5 Data 3 Set Summer time month (1 - 12)01 - 1F6 Data 4 Set winter time day 01 - 0C1 to 28, 29, 30, 31 (depending on month and year) Data 5 Set winter time month (1 - 12)00 - 63For Area = $Rule^1$: 4 - 7Data 2 – 5 Summer time switching rule → table 73

Table 71: Index 01 – Summer / winter time change

Table 72: Index 02 – Winter time (only valid if Area = Rule selected)

Byte	Contents		Value (hex)
3	Data 1	Area = Rule	01
4 – 7	Data 2 – 5	Winter time switching rule	→ table 73

Switching rule bit array

Please also read the detailed description in the easy800 manual (AWB2528-1423GB). The following table shows the composition of the corresponding data bytes.

¹⁾ Detailed setting options for easy800/MFD from version 05

Table 73: Switching rule bit array

	Data 5					Data 4	Δ	Data 3	Data 2		
.=:	Bit 31 30 29 28 27 26 25	29 2	8 27 26	25	24	23 22 21 20 19	18 17 16 15	23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	9 8 7 6 5 4	m	2 1 0
	Rule_1		Day		Rule_2	Day	Month	Time of ti	Time of time change	Ι	Differenc e
	0: on		0: Su	0:	0: month	0 to 30	0 to 11	Hour: 0 to 23	Minute: 0 to 59	ö	0: 0:30h
	1: on the first 1: Mon	irst 1	: Mon		1: after the					-:-	1: 1:00h
	2: on the second		2: Tue	2:	2: before the					2:	2: 1:30h
	3: on the third		3: We							÷.	2:00h
	4: on the fourth		4: Thu							4	2:30h
	5: on the last 5:	last 🗜	:: Fi							5:	5: 3:00h

Example

The real-time clock of the easy800 is to be set to Friday 23.05.2003, 14:36.

Byte	Meaning	Value (hex), sent by		
		Master	Slave	
0	Command: Write	B3	-	
	Response: Write successful	_	C1	
1	Len	05	05	
2	Index	00	00	
3	Data 1 (hour)	0E	00	
4	Data 2 (Minute)	24	00	
5	Data 3 (day)	17	00	
6	Data 4 (Month)	05	00	
7	Data 5 (year)	03	00	

All values must be transferred as hexadecimal values.

Read/write image data

Please also observe the relevant description of possible image data provided in the easy800 manual (AWB2528-1423GB) or in the EASY-SOFT Help. The information provided in section "General notes on working with image data" on page 91 also applies to easy700.

Overview

Operands	Meaning	Read/ write	Command (hex)	Page
IA1 – IA4	"Local analog inputs: IA1 – IA4"	Read	02	183
ID1 – ID16	"Local diagnostics: ID1 – ID16"	Read	03	185
IW0	"Local inputs: IW0"	Read	01	187
IW1 – IW8	"Inputs of the stations: IW1 to IW8"	Read	01	189
M	"Markers: M"	Read/write	0B – 0E	190
P1 – P4	"Local P buttons: P1 – P4"	Read	06	193
QA1	"Local analog output: QA1"	Read/write	05	195
QW0, QW1 – QW8	"Local outputs: QW0/ outputs of the stations QW1 – QW8"	Read/write	04	196
R1 – R16 S1 – S8	"Inputs/outputs of EASY-LINK: RW/SW"	Read	07/09	198
RN1 – RN32 SN1 – SN32	"Receive Data Network: RN1 — RN32/ Transmit Data Network: SN1 — SN32"	Read	08/0A	200

Local analog inputs: IA1 - IA4

The analog inputs on the easy800 and MFD basic units can be read directly via CANopen. The 16-bit value is transferred in Intel format (Low Byte first).

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	91	-
	Response:		
	Read successful	_	C2
	Command rejected	-	CO
1	Len	02	02
2	Туре	02	02
3	Index	$01 - 04^{1}$	$01 - 04^{1}$
4	Data 1 (Low Byte)	00	See example
5	Data 2 (High Byte)	00	See example
6 – 7	Data 3 – 4	00	00

¹⁾ 01 = Analog input 17

^{02 =} Analog input 18

^{03 =} Analog input I11

^{04 =} Analog input I12

Example

A voltage signal is present at analog input 1. The required telegrams for reading the analog value are as follows:

Byte	Meaning	Value (hex), sent by		
		Master	Slave	
0	Command: Read	91	-	
	Response: Read successful	-	C2	
1	Len	02	02	
2	Туре	02	02	
3	Index	01 ¹	011	
4	Data 1	00	D9	
5	Data 2	00	02	
6	Data 3	00	00	
7	Data 4	00	00	

^{1) 01 =} Analog input 1

Byte 4 – Data 1 (Low Byte): D9_{hex}

Byte 5 - Data 2 (High Byte): 02_{hex}

 \rightarrow corresponding 16-bit value: 02D9_{hex} = 729 (7.29 V)

Local diagnostics: ID1 - ID16

The local diagnostics (ID1 - ID8) indicate the status of the individual NET stations. The connection to the remote station (only MFD) is indicated via ID9.

Byte	Meaning	Value (hex), sent by		
		Master	Slave	
0	Command: Read	91	-	
	Response:			
	Read successful	_	C2	
	Command rejected	-	СО	
1	Len	02	02	
2	Туре	03	03	
3	Index	00	00	
4	Data 1 (Low Byte)	00	→ table 74	
5	Data 2 (High Byte)	00	→ table 74	
6 – 7	Data 3 – 4	00	00	

Table 74: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
ID1									0/1
ID2								0/1	
ID8		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
Data 2	Bit	7	6	5	4	3	2	1	0 0/1
	Bit	7	6	5	4	3	2	1	
	Bit	7	6	5		3	2		

0/1= active/inactive NET station, -= not assigned

Example

Data 1 = F8, Data $2 = FF \rightarrow In$ the easy-NET network, the three stations are present with the NET IDs 1, 2, 3

Local inputs: IW0

This command string enables you to read the local inputs of the easy800/MFD. The relevant input word is stored in Intel format.

Byte	Meaning	Value (hex), sent by		
		Master	Slave	
0	Command: Read	91	-	
	Response:			
	Read successful	_	C2	
	Command rejected	-	CO	
1	Len	02	02	
2	Туре	01	01	
3	Index	00	00	
4	Data 1 (Low Byte)	00	→ table 75	
5	Data 2 (High Byte)	00	→ table 75	
6 – 7	Data 3 – 4	00	00	

Table 75: Byte 4 to 5: Data 1 to 2

Data 1	Bit	7	6	5	4	3	2	1	0
I1									0/1
12								0/1	
18		0/1							
Data 2	Bit	7	6	5	4	3	2	1	0
19									0/1
I10								0/1	
110									

Example: Read local inputs IW0

Byte	Meaning	Value (hex), s	ent by
		Master	Slave
0	Command: Read	91	-
	Response: Read successful	-	C2
1	Len	02	02
2	Туре	01	01
3	Index	00	00
4	Data 1	00	C4
5	Data 2	00	02
6	Data 3	00	00
7	Data 4	00	00

All values must be transferred as hexadecimal values.

The values Data 1 = C4 and Data 2 = 02 indicate that the inputs 18, 17, 13 and 110 have been set to 1.

Inputs of the stations: IW1 to IW8

The easy800 and MFD devices can be remotely expanded very simply using the EASYNET. The service offered here makes it possible to implement read access to the inputs of individual NET stations.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	91	_
	Response:		
	Read successful	_	C2
	Command rejected	-	CO
1	Len	02	02
2	Туре	01	01
3	Index	$01 - 08^{1}$	$01 - 08^{1}$
4	Data 1 (Low Byte)	00	→ table 75
5	Data 2 (High Byte)	00	on page 187.
6 – 7	Data 3 – 4	00	00

¹⁾ Corresponds to address of network station

Markers: M..

Byte	Meaning	Value (hex), sent	by
		Master	Slave
0	Command		
	Read	91	-
	Write	B1	_
	Response		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Len	→ table 76	→ table 76
2	Туре		
3	Index		
4 – 7	Data 1 – 4		
	Read operation	00	→ "Example 1: setting/resetting a marker bit" on page 192
	Write operation	→ "Example 2: write marker word" on page 192	00

Table 76: Byte 1 to 3: Len, Type, Index

Operand		Len	Type	Index
Marker bit	M1 M96	01 _{hex}	0B _{hex}	01 to 60 _{hex}
Marker byte	MB1 MB96	01 _{hex}	0C _{hex}	01 to 60 _{hex}
Marker word	MW1 MW96	02 _{hex}	0D _{hex}	01 to 60 _{hex}
Marker double word	MD1 MD96	04 _{hex}	0E _{hex}	01 to 60 _{hex}

If required, refer to the more detailed description of the marker allocation in the easy800 manual. Only a small extract of this manual is shown at this point in order to illustrate the allocation principle.

Attention!

The function blocks and DW markers (32-bit values) of easy800/MFD operate with signed values.

Applies to MD, MW, MB, M	Left = Most significant bit, byte, word			Right = Least significant bit, byte, word
32 bit	MD1			
16 bit	MW2		MW1	
8 bit	MB4	MB3	MB2	MB1
1 bit	M32 to M25	M24 to M17	M16 to M9	M8 to M1
32 bit	MD2			
16 bit	MW4		MW3	
8 bit	MB8	MB7	MB6	MB5
1 bit	M64 to M57	M56 to M49	M48 to M41	M40 to M33

The relevant marker values are transferred in Intel format. In other words, the first byte is the low byte (Byte 4) and the last byte the high byte.

Example 1: setting/resetting a marker bit

Marker bit 62 is to be set or reset. To set the marker bit write a 1 in the least significant bit of the Data 1 and a 0 to reset it.

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command: Write	B1	-
	Response: Write successful	_	C1
1	Len	01	01
2	Туре	ОВ	ОВ
3	Index	3E	3E
4	Data 1	01/00 ¹⁾	00
5 – 7	Data 2 – 4	00	00

¹⁾ 01 = set, 00 = reset

Example 2: write marker word

The value 823 is to be written to the marker word MW32: $823_{dec} = 337_{hex} \rightarrow Data \ 1 = 37_{hex}$, Data $2 = 03_{hex}$

Byte	Meaning	Value (he	ex), sent
		Master	Slave
0	Command: Write	B1	_
	Response: Write successful	_	C1
1	Len	01	01
2	Туре	0D	0D
3	Index	20	20
4	Data 1	37	00
5	Data 2	03	00
6	Data 3	00	00
7	Data 4	00	00

Local P buttons: P1 - P4

The local P buttons are the display cursor buttons of the easy800/MFD basic unit. You can scan the buttons in both RUN and STOP mode.

Ensure that the P buttons are also activated via the SYSTEM menu (in the basic unit).

Only one byte has to be transferred for the P buttons.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	91	_
	Response:		
	Read successful	_	C2
	Command rejected	-	CO
1	Len	02	02
2	Туре	06	06
3	Index	00	00
4	Data 1 (Low Byte)	00	→ table 77
5 – 7	Data 2 – 4	00	00

Table 77: Byte 4: Data

Data 1	Bit	7	6	5	4	3	2	1	0
P1									0/1
P2								0/1	
P3							0/1		
P4						0/1			
_					0				
_				0					
_			0						
_		0							

Local analog output: QA1

The commands provided can be used to access the local analog output of the easy800 or MFD basic unit. When writing to the analog output (only possible with easy800 version 04 or higher), however, the value will only be output externally if the device concerned is in RUN mode and the image concerned has not been overwritten by the actual program.

>> section "Read/write image data" on page 182.

Byte	Meaning	Value (hex), s	ent by
		Master	Slave
0	Command		
	Read	91	-
	Write ⁾	B1	_
	Response		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	_	CO
1	Len	02	02
2	Туре	05	05
3	Index	00	00
4 – 5	Data 1 – 2		
	Read operation	00	→ Example
	Write operation	→ Example	00
6 – 7	Data 3 – 4	00	00

Write operations are only possible with easy800 Version 04 or higher, -> section "Version history" on page 176.

Example:

The analog output is to output a value of approx. 5 V.

 $500 = 01F4_{hex}$ Byte 4 – Data 1 (Low Byte): $F4_{hex}$ Byte 5 – Data 2 (High Byte): $O1_{hex}$

Local outputs: QW0/ outputs of the stations QW1 – QW8

The local outputs can be read directly via CANopen and also written to with easy800 version 04 or higher. However, the outputs are only switched externally if the device is in RUN mode and the addressed output is not being used in the circuit diagram.

section "Read/write image data" on page 182.

Byte	Meaning	Value (hex), ser	nt by
		Master	Slave
0	Command		
	Read	91	-
	Write ¹⁾	B1	-
	Response		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Len	02	02
2	Туре	04	04
3	Index ²⁾	00/01 – 08	00/01 - 08
4	Data 1		
	Read operation	00	→ table 74
	Write operation	→ table 78	00
5 – 7	Data 2 – 4	00	00

Write operations are only possible with easy800 Version 04 or higher, → section "Version history" on page 176.

²⁾ 00 = Local output01 - 08 = Outputs of network stations 1 - 8

Table 78: Byte 4: Data

Data 1	Bit	7	6	5	4	3	2	1	0
Q1									0/1
Q2								0/1	
Q3							0/1		
Q4						0/1			
Q5 Q6					0				
Q6				0					
Q7			0						
Q8		0							

Inputs/outputs of EASY-LINK: RW/SW

This service allows you to read the local R and S data and the data of the NET stations (1-8) transferred via EASY-LINK, again from the relevant easy800/MFD image.

Byte	Meaning	Value (hex),	sent by
		Master	Slave
0	Command: Read	91	_
	Response:		
	Read successful	_	C2
	Command rejected	-	CO
1	Len	02	02
2	Туре	For RW: 07	For RW: 07
		For SW: 09	For SW: 09
3	Index	$00/01 - 08^1$	$00/01 - 08^1$
4	Data 1 (Low Byte)	00	→ table 79
5	Data 2 (High Byte)	00	→ table 79
6 – 7	Data 3 – 4	00	00

¹⁾ 00 = Local input/output01 - 08 = Address of network station (NET-ID 1 - 8)

Table 79: Byte 4 to 5: Data 1 to 2

Data 1	l	Bit	7	6	5	4	3	2	1	0
RW	SW									
R1	S 1									0/1
R2	S2								0/1	
R3	S3							0/1		
R4	S4						0/1			
R5	S5					0/1				
R6	S6				0/1					
R7	S7			0/1						
R8	S8		0/1							
Data 2	2	Bit	7	6	5	4	3	2	1	0
R9	_									0/1
R10	_								0/1	
R11	_							0/1		
R12	_						0/1			
R13	_					0/1				
R14	_				0/1					
R15	_			0/1						
R16	_		0/1							

Receive Data Network: RN1 – RN32/ Transmit Data Network: SN1 – SN32

EASYNET allows a point-to-point connection to be implemented between the individual NET stations. The RN and SN data are used for the data exchange (see the easy800 manual).

The RN SN data of the local device (Index = 0) to which the EASY221-CO is fitted cannot be scanned. In this case the command would be denied with the $0C_{hex}$ signal.

Byte	Meaning	Value (hex),	sent by
		Master	Slave
0	Command: Read	91	-
	Response:		
	Read successful	_	C2
	Command rejected	_	CO
1	Len	04	04
2	Туре	For RN1 – RN3	32: 08
		For SN1 – SN3	2: 0A
3	Index	$01 - 08^{1}$	$01 - 08^{1}$
4 – 7	Data 1 – 4	00	→ table 80

¹⁾ Corresponds to NET-ID

Table 80: Byte 4 to 7: Data 1 to 4

Data 1		Bit	7	6	5	4	3	2	1	0
RN1	SN1									0/1
									0/1	
RN8	SN8		0/1							
Data 2	2	Bit	7	6	5	4	3	2	1	0
RN9	SN9									0/1
RN16	SN16		0/1							
Data 3	3	Bit	7	6	5	4	3	2	1	0
RN17	SN17									0/1
RN24	SN24		0/1							
RN24		Bit	0/1 7	6	5		3	2	1	0
	1	Bit		6	5		3	2	1	0 0/1
Data 4	1	Bit		6	5		3	2	1	

Read/write function block data

Please also note the relevant description of the function blocks provided in the easy800 manual.

General notes

Always note the following when working with function blocks:

- The relevant data is transferred in Intel format. In other words, the first byte is the low byte (Byte 4) and the last byte (byte 7) the high byte.
- The maximum data length is 4 bytes. All values must be transferred in hexadecimal format.
- All 32-bit values are treated as signed values. When transferring 32-bit values, ensure that the appropriate value range is suitable for long integers, i.e. signed. 32-bit value: -2147483648 .. 0 .. +2147483647

Overview

Operands	Meaning	Read/write	Type(hex)	Page
A01 – A32	"Analog value comparators: A01 – A32"	Read/write	11	204
AR01 – AR32	"Arithmetic function block: AR01 – AR32"	Read/write	12	206
BC01 – BC32	"Block compare: BC01 – BC32"	Read/write	25	208
BT01 – BT32	"Block transfer: BT01 – BT32"	Read/write	26	210
BV01 – BV32	"Boolean operation: BV01 – BV32"	Read/write	13	212
C01 – C32	"Counters: C01 – C32"	Read/write	14	214
CF01 – CF04	"Frequency counters: CF01 – CF04"	Read/write	15	216
CH01 – CH04	"High-speed counters: CH01 – CH04"	Read/write	16	218
CI01 – CI02	"Incremental counters: CI01 – CI02"	Read/write	17	220
CP01 – CP32	"Comparators: CP01 – CP32"	Read/write	18	222
D01 – D32	"Text output function blocks: D01 – D32"	Read/write	19	224
DB01 – DB32	"Data function blocks: DB01 – DB32"	Read/write	1A	227
DC01 – DC32	"PID controllers: DC01 – DC32"	Read/write	27	229
FT01 – FT32	"Signal smoothing filters: FT01 – FT32"	Read/write	28	232
GT01 – GT32	"Receive network data: GT01 – GT32"	Read	1B	234
HW01 – HW32	"7-day time switches: HW01 – HW32"	Read	1C	236
HY01 – HY32	"Year time switches: HY01 – HY32"	Read	1D	239
LS01 – LS32	"Value scaling: LS01 – LS32"	Read/write	29	242
MR01 – MR32	"Master reset: MR01 – MR32"	Read	0F	244
NC01 – NC32	"Numerical converters : NC01 – NC32"	Read/write	2A	246
OT01 – OT04	"Operating hours counters: OT01 – OT04"	Read/write	1E	248
PT01 – PT32	"Transmit network data: PT01 – PT32"	Read	1F	250
PW01 – PW02	"Pulse width modulation: PW01 – PW02"	Read/write	2B	252
SC01	"Synchronize clock: SC01"	Read	20	254
ST01	"Set cycle time: ST01"	Read/write	2C	255
T01 – T32	"Timing relays: T01 – T32"	Read/write	21	257
VC01 – VC32	"Value limitation: VC01 – VC32"	Read/write	2D	260

Analog value comparators: A01 – A32 Telegram structure

Byte	Meaning	Value (hex), sent b	у
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	_
	Response:		
	Read successful	-	C2
	Write successful	-	C1
	Command rejected	-	CO
	rejected		
1	Туре	11	11
2	Instance	01 – 20	01 – 20
3	Index	→ table 81	→ table 81
4 – 7	Data 1 – 4	00	depending on index, → table 82, 83

Table 81: Operand overview

Index (hex)	Operand		Read	Write
,				
00	Bit IO, → table 82		×	
01	Mode, → table 83		×	
02	Comparison value 1	11	×	c ¹
03	Gain factor for I1 (I1 = F1 \times value)	F1	×	c ¹
04	Comparison value 2	12	×	c ¹
05	Gain factor for I2 (I2 = F2 \times value)	F2	×	c ¹
06	Offset for value I1	OS	×	c ¹
07	Switching hysteresis for value I2 (the value of HY is for both positive and negative hysteresis.)	HY	×	c ¹

1) The value can only be written if it is assigned to a constant in the program.

The data for index 2 to 7 is transferred as a 32-bit value in Intel format (Data $1-Low\ Byte$ to Data $4-High\ Byte$).

Table 82: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	-	CY ¹	Q1 ²

- 1) Status 1 if the value range is exceeded
- 2) Status 1 if the condition is fulfilled (e.g. I1 < I2 with LT mode)

Table 83: Index 1 - Mode

Data 1 (hex)		
00	LT	Less than (I1 < I2)
01	EQ	Equal to (I1 = IGT)
02	GT	Greater than (I1 > I2)

Arithmetic function block: AR01 – AR32 Telegram structure

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	-
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	_	C0
1	Туре	12	12
2	Instance	01 – 20	01 – 20
3	Index	→ table 84	→ table 84
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 85, 86
	Write operation	depending on index, → table 85, 86	00

Table 84: Operand overview

Index (hex)	Operand		Read	Write
00	Bit IO, → table 85		×	
01	Mode, → table 86		×	
02	First operand	I 1	×	c ¹
03	Second operand	12	×	c ¹
04	Result	QV	×	

1) The value can only be written if it is assigned to a constant in the program.

The data for index 2 to 4 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 85: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1
FB output Data 3		_	-	-	-	-	ZE ¹	CY ¹

- 1) Status 1 if the value of the function block output QV (the calculation result) equals zero
- 2) Status 1 if the value range is exceeded

Table 86: Index 1 - Mode

Data 1 (hex)		
00	ADD	Add (I1 + I2 = QV)
01	SUB	Subtract (I1 $-$ I2 $=$ QV)
02	MUL	Multiply (I1 \times I2 = QV)
03	DIV	Divide (I1: I2 = QV)

Block compare: BC01 - BC32

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	25	25
2	Instance	01 – 20	01 – 20
3	Index	→ table 87	→ table 87
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 88, 89
	Write operation	depending on index, → table 88, 89	00

Index Read Write Operand (hex) 00 Bit IO, → table 88 X 01 Mode. → table 89 X 1ء 02 Source range 1 11 X 1ء 03 12 Target range 2 X 1ء 04 Number of elements to NO X compare: 8 (max. 192 bytes)

Table 87: Operand overview

 The value can only be written if it is assigned to a constant in the program.

The data for index 2 to 4 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 88: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	EN ¹
FB output Data 3		-	-	-	-	EQ ²	E3 ³	E2 ⁴	E1 ⁵

- 1) Activates the function block on status 1.
- 2) Status 1 if the data ranges are equal; status 0 if not equal Error outputs
- 3) Status 1 if the number of elements exceeds the source or target range.
- 4) Status 1 if the source and target range overlap.
- 5) Status 1 if the source or target range are outside of the available marker range (offset error)

Table 89: Index 1 - Mode

Mode	Data 1 (hex)	Operating mode
	02	Compare (internal easy status signal for Block Compare mode)

Block transfer: BT01 - BT32

Telegram structure

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	_	C0
1	Туре	26	26
2	Instance	01 – 20	01 – 20
3	Index	→ table 90	→ table 90
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 91, 92
	Write operation	depending on index, → table 91, 92	00

Table 90: Operand overview

Index (hex)	Operand		Read	Write
00	Bit IO, → table 91		×	
01	Mode, → table 92		×	
02	Source range 1	I1	×	c ¹
03	Target range 2	12	×	c ¹
04	Number of elements to compare: max. 192 bytes	NO	×	c ¹

¹⁾ The value can only be written if it is assigned to a constant in the program.

210

The data for Index 2 and 3 is transferred as a 32-bit value in Intel format (Low Byte first) (Data 1-Low Byte .. Data 2-High Byte).

Table 91: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	_	-	-	T ¹
FB output Data 3		-	-	-	-	_	E3 ²	E2 ³	E1 ⁴

1) Transfer of the source address specified at I1 to the target address specified at I2 on rising edge.

Error outputs

- 2) Status 1 if the number of elements exceeds the source or target range.
- 3) Status 1 if the source and target range overlap.
- 4) Status 1 if the source or target range are outside of the available marker range (offset error)

Table 92: Index 1 - Mode

Data 1 (hex)	Operating mode
00	INI: Initialises the target range with a byte value stored at the source address.
01	CPY: Copies a data block from a source to a target range. Data block size is specified at NO.

Boolean operation: BV01 - BV32

Byte	Meaning	Value (hex), sent b	у
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	-
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	-	CO
1	Туре	13	13
2	Instance	01 – 20	01 – 20
3	Index	→ table 93	→ table 93
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 94, 95
	Write operation	depending on index, → table 94, 95	00

Table 93: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 94	×	
01	Mode, → table 95	×	
02	First operand I1	×	c ¹
03	Second operand 12	×	c ¹
04	Operation result Q	V ×	

The data for index 2 to 4 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 94: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1
FB output Data 3		_	-	-	-	-	-	ZE ¹

 Status 1 if the value of the function block output QV (the operation result) equals zero

Table 95: Index 1 - Mode

Data 1 (hex)		
00	AND	And operation
01	OR	Or operation
02	XOR	Exclusive Or operation
03	NET	Inverts the individual bits of the value at I1. The inverted value is represented as a signed decimal value.

Counters: C01 – C32 Telegram structure

Byte	Meaning	Value (hex), sent b	nex), sent by				
		Master	Slave				
0	Command:						
	Read	92	_				
	Write	B2	_				
	Response:						
	Read successful	_	C2				
	Write successful	_	C1				
	Command rejected	-	CO				
1	Туре	14	14				
2	Instance	01 – 20	01 – 20				
3	Index	→ table 96	→ table 96				
4 – 7	Data 1 – 4						
	Read operation	00	depending on index, → table 97				
	Write operation	depending on index, → table 97	00				

Index (hex)	Operand		Value	Read	Write
00	Bit IO		→ table 97	×	
01	Mode/Parameters		-	-	_
02	Upper setpoint	SH	In integer range from —	×	c ¹
03	Lower setpoint	SL	2147483648 to +2147483647	×	c ¹
04	Preset actual value	SV	12117 103 047	×	c ¹
05	Actual value in RUN mode	QV		×	

Table 96: Operand overview

The data for index 2 to 5 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 97: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		_	-	-	-	SE ¹	D^2	C ₃	RE ⁴
FB output Data 3		_	-	-	_	ZE ⁵	CY ⁶	FB ⁷	OF ⁸

- 1) Transfer preset actual value on rising edge
- 2) Count direction: 0 = up counting, 1 = down counting
- 3) Count coil, counts on every rising edge
- 4) Reset actual value to zero
- 5) Zero: Status 1 if the value of the function block output QV (the counter status) equals zero
- 6) Carry: Status 1 if the value range is exceeded
- 7) Fall below: Status 1 if the actual value ≤ lower setpoint
- 8) Overflow: Status 1 if the actual value ≥ upper setpoint

Frequency counters: CF01 – CF04 Telegram structure

Byte	Meaning	Value (hex), sent h	ру
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	_
	Response:		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	-	CO
2	Туре	15	15
3	Instance	01 – 04	01 – 04
4	Index	→ table 98	→ table 98
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 99
	Write operation	depending on index, → table 99	00

Table 98: Operand overview

Index (hex)	Operand		Read	Write
00	Bit IO, → table 99		×	
01	Mode/Parameters		_	_
02	Upper setpoint	SH	×	c ¹
03	Lower setpoint	SL	×	c ¹
04	Actual value in RUN mode	QV	×	

The data for index 2 to 4 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 99: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	EN ¹
FB output Data 3		-	-	-	_	-	ZE ²	FB ³	OF ⁴

- Counter enable
- 2) Zero: Status 1 if the value of the function block output QV (the counter status) equals zero
- 3) Fall below: Status 1 if the actual value ≤ lower setpoint
- 4) Overflow: Status 1 if the actual value ≥ upper setpoint

High-speed counters: CH01 – CH04

Byte	Meaning	Value (hex), sent b	у
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	_
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	-	CO
1	Туре	16	16
2	Instance	01 – 04	01 – 04
3	Index	→ table 100	→ table 100
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 101
	Write operation	depending on index, → table 101	00

Index Value Write Operand Read (hex) 00 Bit IO → table 101 X 01 Mode/Parameters 1ء 02 Upper setpoint SH In integer range from X -2147483648 to 1ء 03 Lower setpoint SL X +2147483647 1ء 04 Preset actual value SV X 05 Actual value in RUN OV X mode

Table 100: Operand overview

The data for index 2 to 5 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 101: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		_	-	-	-	EN ¹	SE ²	D_3	RE ⁴
FB output Data 3		_	-	-	_	ZE ⁵	CY ⁶	FB ⁷	OF ⁸

- 1) Counter enable
- 2) Transfer preset actual value on rising edge
- 3) Count direction: 0 = up counting, 1 = down counting
- 4) Reset actual value to zero
- 5) Zero: Status 1 if the value of the function block output QV (the counter status) equals zero
- 6) Carry: Status 1 if the value range is exceeded
- 7) Fall below: Status 1 if the actual value ≤ lower setpoint
- 8) Overflow: Status 1 if the actual value ≥ lower setpoint

Incremental counters: CI01 – CI02 Telegram structure

Byte	Meaning	Value (hex), sent b	у
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	-
	Response:		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	_	CO
1	Туре	17	17
2	Instance	01 – 02	01 – 02
3	Index	→ table 102	→ table 102
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 103
	Write operation	depending on index, → table 103	00

Index (hex)	Operand		Value	Read	Write
00	Bit IO		→ table 103	×	
01	Mode/Parameters		-	_	_
02	Upper setpoint	SH	In integer range from	×	c ¹
03	Lower setpoint	SL	-2147483648 to +2147483647	×	c ¹
04	Preset actual value	SV	12117 103017	×	c ¹
05	Actual value in RUN mode	QV		×	

Table 102: Operand overview

The data for index 2 to 5 is transferred as a 32-bit value in Intel format (Data 1 - Low Byte to Data 4 - High Byte).

Table 103: Index 0 – Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		_	_	_	_	-	EN ¹	SE ²	RE ³
FB output Data 3		_	_	_	_	ZE ⁴	CY ⁵	FB ⁶	OF ⁷

- 1) Counter enable
- 2) Transfer preset actual value on rising edge
- 3) Reset actual value to zero
- 4) Zero: Status 1 if the value of the function block output QV (the counter status) equals zero
- 5) Carry: Status 1 if the value range is exceeded
- 6) Fall below: Status 1 if the actual value ≤ lower setpoint
- 7) Overflow: Status 1 if the actual value ≥ lower setpoint

Comparators: CP01 - CP32

Byte	Meaning	Value (hex), sent b	у
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	_
	Response:		
	Read successful	-	C2
	Write successful	_	C1
	Command rejected	-	CO
1	Туре	18	18
2	Instance	01 – 20	01 – 20
3	Index	→ table 104	→ table 104
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 105
	Write operation	depending on index, → table 105	00

Table 104: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 105	×	
01	Mode/Parameters	-	-
02	Comparison value I1	×	c ¹
03	Comparison value 12	×	c ¹

The data for index 2 and 3 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 105: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1
FB output Data 3		-	-	-	-	GT ¹	EQ ²	LT ³

- 1) greater than: Status 1 if the value at I1 is greater than value at I2 (I1 > I2)
- 2) equal: Status 1 if the value at I1 is equal to value at I2 (I1 = I2)
- 3) less than: Status 1 if the value at I1 is less than value at I2 (I1 < I2)

Text output function blocks: D01 – D32 Telegram structure

Byte	Meaning	Value (hex), sent k	ру
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	19	19
2	Instance	01 – 20	01 – 20
3	Index	→ table 106	→ table 106
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 107
	Write operation	depending on index, → table 107	00

Table 106: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 107	×	
01	Mode/Parameters	_	_
02	Text line 1, column 1 - 4	×	
03	Text line 1, column 5 - 8	×	
04	Text line 1, column 9 - 12	×	
05	Text line 1, column 13 - 16	×	
06	Text line 2, column 1 - 4	×	
07	Text line 2, column 5 - 8	×	
08	Text line 2, column 9 - 12	×	
09	Text line 2, column 13 - 16	×	
10	Text line 3, column 1 - 4	×	
11	Text line 3, column 5 - 8	×	
12	Text line 3, column 9 - 12	×	
13	Text line 3, column 13 - 16	×	
14	Text line 4, column 1 - 4	×	
15	Text line 4, column 5 - 8	×	
16	Text line 4, column 9 - 12	×	
17	Text line 4, column 13 - 16	×	
18	Variable 1	×	c ¹
19	Variable 2	×	c ¹
20	Variable 3	×	c ¹
21	Variable 4	×	c ¹
22	Scaling minimum value 1	×	
23	Scaling minimum value 2	×	
24	Scaling minimum value 3	×	
25	Scaling minimum value 4	×	
26	Scaling maximum value 1	×	

Index (hex)	Operand	Read	Write
27	Scaling maximum value 2	×	
28	Scaling maximum value 3	×	
29	Scaling maximum value 4	×	
30	Control information line 1	×	
31	Control information line 2	×	
32	Control information line 3	×	
33	Control information line 4	×	

¹⁾ The value can only be written if it is assigned to a constant in the program.

The variables 1 to 4 (index 18 to 21) are transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 107: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		_	-	-	-	-	1	-	EN ¹
FB output Data 3		_	_	-	-	_	-	-	Q1 ²

- 1) Text function block enable
- 2) Status 1, text function block is active

Data function blocks: DB01 - DB32

Byte	Meaning	Value (hex), sent b	Value (hex), sent by							
		Master	Slave							
0	Command:									
	Read	92	_							
	Write	B2	_							
	Response:									
	Read successful	_	C2							
	Write successful	-	C1							
	Command rejected	_	CO							
1	Туре	1A	1A							
2	Instance	01 – 20	01 – 20							
3	Index	→ table 108	→ table 108							
4 – 7	Data 1 – 4									
	Read operation	00	depending on index, → table 109							
	Write operation	depending on index, → table 109	00							

Table 108: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 109	×	
01	Mode/Parameters	-	_
02	Input value: value that I1 is transferred to the QV output when the FB is triggered.	×	c ¹
03	Output value QV	×	

¹⁾ The value can only be written if it is assigned to a constant in the program.

The data for index 2 and 3 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 109: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	-	T ¹
FB output Data 3		-	-	_	-	-	-	-	Q1 ²

- 1) Transfer of the value present at I1 on rising edge.
- 2) Status 1 if the trigger signal is 1.

PID controllers: DC01 - DC32

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	_
	Response:		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	27	27
2	Instance	01 – 20	01 – 20
3	Index	→ table 110	→ table 110
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 111, 112
	Write operation	depending on index, → table 111, 112	

Table 110: Operand overview

Index (hex)	Operand		Read	Write
00	Bit IO, → table 111		×	
01	Mode, → table 112		×	
02	Setpoint: -32768 to +32767	I1	×	c ¹
03	Actual value: -32768 to +32767	12	×	c ¹
04	Proportional gain [%], Value range: 0 to 65535	KP	×	c ¹
05	Reset time [0.1 s], Value range: 0 to 65535	TN	×	c ¹
06	Rate time [0.1 s], Value range: 0 to 65535	TV	×	c ¹
07	Scan time = Time between function block calls. Value range: 0.1s to 6553.5s. If 0 is entered as the value, the scan time will be determined by the program cycle time.	TC	×	c ¹
08	Manual manipulated variable, value range: –4096 to +4095	MV	×	c ¹
09	Manipulated variable	QV	×	
	• Mode: UNI, value range: 0 to +4095 (12 bit)			
	• Mode: BIP, value range: -4096 to +4095 (13 bit)	=		

¹⁾ The value can only be written if it is assigned to a constant in the program.

The data for Index 2 and 9 is transferred as a 32-bit value in Intel format (Data $1-Low\ Byte$.. Data $2-High\ Byte$).

Table 111: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	SE ¹	ED ²	El ³	EP ⁴	EN ⁵
FB output Data 3		_	_	_	-	-	-	-	LI ⁶

- 1) Transfer of manual manipulated variable on status 1
- 2) Activation of D component on status 1
- 3) Activation of I component on status 1
- 4) Activation of P component on status 1
- 5) Activates the function block on status 1.
- 6) Status 1 if the value range of the medium-voltage was exceeded

Table 112: Index 1 - Mode

Data 1	Operating mode
UNP unipolar	The manipulated variable is output as a unipolar 12-bit value. Corresponding value range for QV 0 to 4095.
BIP bipolar	The manipulated variable is output as a bipolar 13-bit value. Corresponding value range for QV –4096 to 4095

Signal smoothing filters: FT01 – FT32 Telegram structure

Byte	Meaning	Value (hex), sent k	ру
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	28	28
2	Instance	01 – 20	01 – 20
3	Index	→ table 113	→ table 113
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 114
	Write operation	depending on index, → table 114	00

Table 113: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 114	×	
01	Mode/Parameters	_	_
02	Input value, value range: –32768 to +32767	×	c ¹
03	Recovery time [0.1 s], Value range: 0 to 65535 TG	×	c ¹
04	Proportional gain [%], Value range: 0 to 65535 KP	×	c ¹
05	Delayed output value, QV value range: -32768 to +32767	×	

¹⁾ The value can only be written if it is assigned to a constant in the program.

Table 114: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		_	-	-	-	-	-	-	EN ¹

¹⁾ Activates the function block on status 1.

Receive network data: GT01 - GT32

Telegram structure

Byte	Meaning	Value (he	ex), sent by
		Master	Slave
0	Command: Read	92	-
	Response:		
	Read successful	-	C2
	Command rejected	_	CO
1	Туре	1B	1B
2	Instance	01 – 20	01 – 20
3	Index	→ table	115
4 – 7	Data 1 – 4	00	depending on index, → table 116, 117

Table 115: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 116	×	
01	Mode/Parameters, → table 117	×	-
02	Output value: actual QV value from the network	×	

The data for index 2 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 116: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		_	_	_	_	_	_	_	Q^1

Status 1 if a new value is present that is transferred from the NET network.

Table 117: Index 1 – Mode/Parameters (designation of PUT FB with data to be received)

Mode	Data 1	NET-ID ¹	
		0	NET-ID 1
		7	NET-ID 8
Parameters	Data 3	Instance ²	
		0	PT01
		31	PT32

- 1) Number of station transmitting the value. Possible station numbers: 01 to 08
- 2) Transmit FB (e.g. PT 20) of the transmitting NET station. Possible station numbers: 01 32

7-day time switches: HW01 – HW32

Telegram structure

Byte	Meaning	Value (hex	k), sent by	
		Master	Slave	
0	Command: Read	92	_	
	Response:			
	Read successful	_	C2	
	Command rejected	-	CO	
1	Туре	1C	1C	
2	Instance	01 – 20	01 – 20	
3	Index	→ table 118		
4 – 7	Data 1 – 4	00	depending on index, → table 119	

Table 118: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO → table 119	×	
01	Mode/Parameters	-	-
02	Parameters → table 120	×	
	Channel A		
03	Channel B		
04	Channel C		
05	Channel D		

Table 119: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		_	-	-	-	-	-	-	Q ¹

1) Status 1 if the switch-on condition is fulfilled.

The data in the following table is shown in the Motorola format although it is actually transferred in Intel format.

Table 120: Index 2 to 5, Parameter channels A to D

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Date 2									e 1						
ON	d4	d3	d2	d1	d0	h4	h3	h2	h1	h0	m5	m4	m3	m2	m1	m0
	Weekday Hour															
	We	ekday	/			Ηοι	ır				Min	ute				
	We	ekday	/			Hot	ır				Mini	ute				
Bit	We	ekday 6	5	4	3	2	ır 1	0	7	6	Mini	ute 4	3	2	1	0

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0		
	Dat	e 4							Date 3									
OFF	d4	d3	d2	d1	d0	h4	h3	h2	h1	h0	m5	m4	m3	m2	m1	m0		
	Wee	ekday	,			Hou	ır				Min	ute						

m5 to m0: Minute (0 to 59) h4 to h0: Hour (0 to 23)

d5 to d0: Weekday (0 = Sunday to 6 = Saturday)

Example

The channel A parameters of 7-day time switch HW19 are to be read.

Byte	Meaning	Value (hex), se	ent by
		Master	Slave
0	Command: Read	92	-
	Response: Read successful	_	C2
1	Туре	1C	1C
2	Instance	13	13
3	Index	02	02
4	Data 1	00	62
5	Data 2	00	OB
6	Data 3	00	7B
7	Data 4	00	25

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
	Date 2 = 0B _{hex}									Date 1 = 62 _{hex}							
ON	0 0 0 0 1 0 1 1								0	1	1	0	0	0	1	0	
	We	ekday	/			Hou	ır				Min	ute					

Switch-on time:

Weekday = 01_{hex} .. Monday

 $Hour = 0D_{hex} ... 1300 hours$

Minute = 22_{hex} .. 34 Minutes

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0	
	Date 4 = 25 _{hex}									Date 3 = 7B _{hex}							
OFF	0	0	1	0	0	1	0	1	0	1	1	1	1	0	1	1	
	We	ekda	у			Ηοι	ır				Min	ute					

Switch-off time:

Weekday = 04_{hex} .. Thursday

Hour = 15_{hex} .. 2100 hours

Minute = 59_{hex} .. 34 minutes

Year time switches: HY01 - HY32

Byte	Meaning	Value (he	x), sent by
		Master	Slave
0	Command: Read	92	-
	Response:		
	Read successful	_	C2
	Command rejected	-	CO
1	Туре	1D	1D
2	Instance	01 – 20	01 – 20
3	Index	→ table 1	21
4 – 7	Data 1 – 4	00	depending on index, → table 122

Table 121: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO → table 122	×	
01	Mode/Parameters	-	-
02	Parameters → table 123	×	
	Channel A		
03	Channel B		
04	Channel C		
05	Channel D		

Table 122: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		ı	ı	ı	ı	ı	-	ı	Q ¹

¹⁾ Status 1 if the switch-on condition is fulfilled.

The data in the following table is shown in the Motorola format although it is actually transferred in Intel format.

Table 123: Index 2 to 5, parameter channels A to D

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Dat	e 2							Date	1						
ON	у6	у5	y4	у3	y2	y1	y0	m3	m2	m1	m0	d4	d3	d2	d1	d0
	Yea	r						Mon	th			Day				
Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Dat	e 4							Date 3							
OFF	у6	у5	y4	у3	y2	y1	y0	m3	m2	m1	m0	d4	d3	d2	d1	d0
									Month Day							

d4 ... d0: Day (1 .. 31), m3 ... m0: Month (1 .. 12), y6 ... y0: Year (0: 2000 .. 99: 2099)

Example

The channel A parameters of year time switch HY14 are to be written.

Index 2 - 5, Parameter channels A - D

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Dat	te 2							Date	e 1						
ON	0	0	0	0	0	1	1	0	1	1	0	0	1	1	1	0
	Year Month Day															

Switch-on time:

 $Day = 14 = 0E_{hex} = 0000 1110b$

Month = 6 (June) = 06_{hex} = 0000 0110b

Year = $2003 = 03_{hex} = 0000 \ 0011b$

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Dat	te 4							Date	e 3						

Index 2 - 5, Parameter channels A - D

Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Date 2					Date 1										
OFF	у6	у5	y4	у3	y2	y1	y0	m3	m2	m1	m0	d4	d3	d2	d1	d0
	Year N				Mon	onth [Day						

Switch-off time:

 $Day = 3 = 03_{hex} = 0000 0011b$

Month = 10 (October) = $0A_{hex}$ = 0000 1010b Year = 2012 = $0C_{hex}$ = 0000 1100b

Resulting telegram:

Byte	Meaning	Value (hex), s	ent by
		Master	Slave
0	Command: Write	B2	-
	Response: Write successful	-	C1
1	Туре	1D	1D
2	Instance	0E	0E
3	Index	02	02
4	Data 1	8E	00
5	Data 2	06	00
6	Data 3	43	00
7	Data 4	19	00

Value scaling: LS01 - LS32

Byte	Meaning	Value (hex), sent b	у
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	_
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	-	CO
1	Туре	29	29
2	Instance	01 – 20	01 – 20
3	Index	→ table 124	→ table 124
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 125
	Write operation	depending on index, → table 125	

Table 124: Operand overview

Index (hex)	Operand		Read	Write
00	Bit IO, → table 125		×	
01	Mode/Parameters		-	-
02	Input value, value range: 32 bit	I1	×	c ¹
03	Interpolation point 1, X coordinate, value range: 32 bit	X1	×	c ¹
04	Interpolation point 1, Y coordinate, value range: 32 bit	Y1	×	c ¹
05	Interpolation point 2, X coordinate, value range: 32 bit	X2	×	c ¹
06	Interpolation point 2, Y coordinate, value range: 32 bit	Y2	×	c ¹
07	Output value: contains the scaled input value	QV	×	

¹⁾ The value can only be written if it is assigned to a constant in the program.

Table 125: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		_	-	-	-	-	-	-	EN ¹

¹⁾ Activates the function block on status 1.

Master reset: MR01 - MR32

Byte	Meaning	Value (hex	(), sent by
		Master	Slave
0	Command: Read	92	-
	Response:		
	Read successful	-	C2
	Command rejected	_	CO
1	Туре	OF	OF
2	Instance	01 – 20	01 – 20
3	Index		
	Bit IO	00	00
	Mode	01	01
4 – 7	Data 1 – 4	00	depending on index, → table 126, 127

Table 126: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		_	-	-	-	-	-	-	T ¹
FB output Data 3		_	_	_	_	_	_	_	Q1 ²

- 1) Trigger coil. The appropriate Reset is executed if the coil is triggered (with a rising edge).
- 2) Status 1 if the trigger coil MR..T is 1.

Table 127: Index 1 - Mode

Data 1 (hex)		
00	Q	Outputs Q, *Q, S, *S, *SN, QA01 are reset to 0. * depending on the NET-ID
01	M	The marker range MD01 to MD48 is reset to 0.
02	ALL	Has an effect on Q and M.

Numerical converters : NC01 - NC32 Telegram structure

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	_
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	-	CO
1	Туре	2A	2A
2	Instance	01 – 20	01 – 20
3	Index	→ table 128	→ table 128
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 129, 130
	Write operation	depending on index, → table 129, 130	00

Table 128: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 129	×	
01	Mode, → table 130	×	
02	Input value: I1 operand to be converted	×	c ¹
03	Output value: QV contains the conversion result	×	

¹⁾ The value can only be written if it is assigned to a constant in the program.

The data for Index 2 and 3 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte .. Data 2 – High Byte).

Table 129: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		_	_	_	_	_	_	-	EN ¹

¹⁾ Activates the function block on status 1.

Table 130: Index 1 - Mode

Data 1 (hex)		
00	BCD	Converts a BCD coded decimal value to an integer value.
01	BIN	Converts an integer value to a BCD coded decimal value.

Operating hours counters: OT01 - OT04

Further information is available in the S40 Application Note AN27K21g.exe "EASY800/MFD-DP Data Handling Function Block for PS416 and PS4-341".

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	_
	Response:		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	1E	1E
2	Instance	01 – 04	01 – 04
3	Index	→ table 131	→ table 131
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 132
	Write operation	depending on index, → table 132	00

Table 131: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 132	×	
01	Mode/Parameters	-	_
02	Upper threshold value I1	×	c ¹
03	Actual value of operating QV hours counter	×	

1) The value can only be written if it is assigned to a constant in the program.

Table 132: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	-	-	-	-	-	RE ¹	EN ²
FB output Data 3		_	-	-	_	_	-	-	Q1 ³

- 1) Reset coil: Status 1 resets the counter actual value to zero.
- 2) Enable coil
- 3) Status 1 if the setpoint was reached (greater than/equal to)

The data for index 2 and 3 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Transmit network data: PT01 - PT32

Telegram structure

Byte	Meaning	Value (he	x), sent by
		Master	Slave
0	Command: Read	92	-
	Response:		
	Read successful	_	C2
	Command rejected	-	CO
1	Туре	1F	1F
2	Instance	01 – 20	01 – 20
3	Index	→ table 1	33
4 – 7	Data 1 – 4	00	depending on index, → table 134

Table 133: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 134	×	
01	Mode/Parameters	_	-
02	Input value: Setpoint I1 that it transmitted to the NET network	×	

The data for index 2 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 134: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		_	_	_	_	-	-	-	T ¹
FB output Data 3		_	-	-	_	-	-	-	Q1 ²

¹⁾ Trigger coil. The value is provided on the NET if the coil is triggered (with a rising edge).

²⁾ Status 1 if the trigger coil PT..T_ is also 1.

Pulse width modulation: PW01 – PW02 Telegram structure

Byte	Meaning	Value (hex), sent b	у
		Master	Slave
0	Command:		
	Read	92	_
	Write	B2	_
	Response:		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	2B	2B
2	Instance	01 – 02	01 – 02
3	Index	→ table 135	→ table 135
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 136
	Write operation	depending on index, → table 136	00

Table 135: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 136	×	
01	Mode/Parameters	_	-
02	Manipulated variable, value range: 0 to 4095 (12 bit) SV	×	c ¹
03	Period duration [ms], Value range: 0 to 65535 PD	×	c ¹
04	Minimum on duration [ms], Value range: 0 to 65535 ME	×	c ¹

¹⁾ The value can only be written if it is assigned to a constant in the program.

Table 136: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		_	_	_	_	_	-	_	EN ¹
FB output Data 3		_	-	_	_	-	_	-	E1 ²

- 1) Activates the function block on status 1.
- Status 1 if below the minimum on duration or minimum off duration

Synchronize clock: SC01 Telegram structure

Byte	Meaning	Value (he	x), sent by		
		Master	Slave		
0	Command: Read	92	-		
	Response:				
	Read successful	_	C2		
	Command rejected	-	CO		
1	Туре	20	20		
2	Instance	01	01		
3	Index	→ table 137			
4 – 7	Data 1 – 4	00	depending on index, → table 138		

Table 137: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 138	×	
01	Mode/Parameters	_	_

Table 138: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		_	_	_	_	-	-	-	T ¹
FB output Data 3		_	_	_	_	_	_	_	Q1 ²

- Trigger coil. If the coil is triggered (rising edge), the current date, weekday and time of the transmitting station are automatically sent to the NET network.
- 2) Status 1 if the trigger coil SC01T_ is also 1.

Set cycle time: ST01 Telegram structure

Byte	Meaning	Value (hex), sent b	ру
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	-	CO
1	Туре	2C	2C
2	Instance	01	01
3	Index	→ table 139	→ table 139
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 140
	Write operation	depending on index, → table 140	00

Table 139: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 140	×	
01	Mode/Parameters	_	_
02	Cycle time in ms, I1 value range: 0 – 1000	×	c ¹

¹⁾ The value can only be written if it is assigned to a constant in the program.

Table 140: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		-	-	-	-	-	-	-	EN ¹

¹⁾ Activates the function block on status 1.

Timing relays: T01 – T32 Telegram structure

Byte	Meaning	Value (hex), sent by	
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	-
	Response:		
	Read successful	_	C2
	Write successful	-	C1
	Command rejected	-	CO
1	Туре	21	21
2	Instance	01 – 20	01 – 20
3	Index	→ table 141	→ table 141
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 142, 143
	Write operation	depending on index, → table 142, 143	

Table 141: Operand overview

Index (hex)	Operand	Read	Write
00	Bit IO, → table 142	×	
01	Mode/Parameters, → table 143	×	
02	Setpoint 1: I1 Time setpoint 1	×	c ¹
03	Setpoint 2: I2 Time setpoint 2 (with timing relay with 2 setpoints)	×	c ¹
04	Actual value: QV Time elapsed in RUN mode	×	

¹⁾ The value can only be written if it is assigned to a constant in the program.

The data for index 2 to 4 is transferred as a 32-bit value in Intel format (Data 1 – Low Byte to Data 4 – High Byte).

Table 142: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB input Data 1		-	_	_	_	_	ST ¹	EN ²	RE ³
FB output Data 3		_	_	_	_	_	_	_	Q1 ⁴

- 1) Stop, the timing relay is stopped (Stop coil)
- 2) Enable, the timing relay is started (trigger coil)
- 3) Reset, the timing relay is reset (reset coil)
- 4) Switch contact

Table 143: Index 1 - Mode/Parameters

Mode	Data 1	Operating mode
	0	On-delayed
	1	On-delayed with random setpoint
	2	Off-delayed
	3	Off-delayed with random setpoint
	4	On and off delayed (two time setpoints)
	5	On and off delayed each with random setpoint (two time setpoints)
	6	Impulse transmitters
	7	Flashing relay (two time setpoints)
	8	Off-delayed, retriggerable (easy600 Mode)
	9	Off-delayed with random setpoint, retriggerable (easy600 Mode)
Para-	Data 3	Operating mode
meters	0	S (milliseconds)
	1	M:S (seconds)
	2	H:M (minutes)

Value limitation: VC01 - VC32

Telegram structure

Byte	Meaning	Value (hex), sent b	у
		Master	Slave
0	Command:		
	Read	92	-
	Write	B2	_
	Response:		
	Read successful	_	C2
	Write successful	_	C1
	Command rejected	-	CO
1	Туре	2D	2D
2	Instance	01 – 20	01 – 20
3	Index	→ table 144	→ table 144
4 – 7	Data 1 – 4		
	Read operation	00	depending on index, → table 145
	Write operation	depending on index, → table 145	00

Table 144: Operand overview

Index (hex)	Operand		Read	Write
00	Bit IO, → table 145		×	
01	Mode/Parameters		_	_
02	Input value	11	×	c ¹
03	Upper limit value	SH	×	c ¹
04	Lower limit value	SL	×	c ¹
05	Output value: outputs the value present at input I1 within the set limits.	QV	×	

¹⁾ The value can only be written if it is assigned to a constant in the program.

Table 145: Index 0 - Bit IO

	Bit	7	6	5	4	3	2	1	0
FB output Data 3		_	-	-	-	-	_	-	EN ¹

¹⁾ Activates the function block on status 1.

Analysis – error codes via EASY-LINK

The easy800/MFD basic unit will return a defined error code in the event of an incorrectly selected operating mode or an invalid telegram. The error code transferred has the following structure:

Telegram structure

Byte	Meaning	Slave transmits (value hex)
0	Response	
	Command rejected	C0
1	Туре	
2	Instance	
3	Index	
4	Error code	→ table 146
5 – 7	Data 2 – 4	

Table 146: Error codes

Error code	Description
0x00	No error
0x03	Formal error in the response related to type, instance or index
0x04	No communication possible (Timeout)
0x05	DP module has only transmitted 0xC0 (Easy800 Basic II, MFD Version I).
0x45	The value selected by Type and Index must not be overwritten (Bit IO, Mode/Parameters or output value).
0x46	The value selected by Type and Index is not assigned to a constant and cannot therefore be written.
0x9E	Access to the FB data not possible (program download active).
0x9F	Type is invalid (no defined FB, depending also on the version of the addressed device).
0xA0	FB selected by Type and Index does not exist in the program.
0xA1	Index related to the specified FB type is invalid.

11 What happens if...?

RUN LED		
Status of the RUN LED	Possible cause	To correct or avoid error
OFF	The EASY221-CO is either switched off or is currently being reset.	Switch on the EASY221-CO and supply with mains voltage.
Flickering	Auto baud recognition is currently busy (LED flickers, alternating with the ERR LED).	Check the communication of the master PLC or the bus.
Single flash	The device is in STOPPED state.	Change the status of NMT (network
Flashing	The device is in PRE-OPERATIONAL state.	management), see Section 4.3
ON	The device is in OPERATIONAL state.	

Error LED		
Status of the error LED	Possible cause	To correct or avoid error
OFF	The EASY221-CO is operating error-free. If the RUN LED is also off, the EASY221-CO is either switched off or is currently being reset.	Switch on the power supply.
Single flash	At least one of the error counters of the CANopen PLC has either reached or exceeded the Warning Limit. Too many errors have occurred on the CANopen bus.	Check for external interference on the bus. EMC problems — is the shielding properly terminated? Is the correct baud rate set at the other nodes?
Flickering	Auto baud rate recognition is currently busy (flickers alternating with the RUN LED).	Check the communication of the master PLC or the bus.
Flashes twice	A protective Guard Event or a Heartbeat Event has occurred.	Check configuration data.
ON	The CANopen PLC has changed to BUS-OFF state.	Verify the correct setting of the NODE ID.

Annex

Technical Data		
General		
Standards and regulations		EN 61000-6-1; EN 61000-6-2; EN 61000-6-3; EN 61000-6-4, IEC 60068-2-27, IEC 50178
Dimensions (W \times H \times D)	mm	$35.5 \times 90 \times 56.5$
Weight	g	150
Mounting		DIN 50022 rail, 35 mm Screw fixing with fixing bracket ZB4-101-GF1 (accessories)
Climatic environmental conditions (Cold to IEC 1, Heat to IEC 60068-2-2)	60068-2-	
Ambient temperature Installed horizontally/vertically	°C	-25 to +55
Condensation		Prevent condensation with suitable measures
Storage/transport temperature	°C	-40 to +70
Relative humidity (IEC 60068-2-30), no moisture condensation	%	5 to 95
Air pressure (operation)	hPa	795 to 1080
Corrosion resistance (IEC 60068-2-42, IEC 60068-2-43)		SO ₂ 10 cm ³ /m ³ , 4 days H ₂ S 1 cm ³ /m ³ , 4 days
Ambient mechanical conditions		
Pollution degree		2
Degree of protection (EN 50178, IEC 60529, VBG4)		IP20
Vibration (IEC 60068-2-6)		
constant amplitude 0.15 mm	Hz	10 to 57
Constant acceleration 2 g	Hz	57 to 150
Shocks (IEC 60068-2-27) semi-sinusoidal 15 g/11 ms	Shocks	18
Drop (IEC 60068-2-31) height	mm	50
Free fall, when packed (IEC 60068-2-32)	m	1

Electromagnetic compatibility (EMC)		
Electrostatic discharge (ESD), (IEC/EN 61000-4-2, severity level 3)		
Air discharge	kV	8
Contact discharge	kV	6
Electromagnetic fields RFI), (IEC/EN 61000-3	V/m	10
Radio interference suppression (EN 55011, EN 55022)	, class	В
Burst (IEC/EN 61000-4-4, severity level 3)		
Power cables	kV	2
Signal cables	kV	2
High-energy pulses (surge) of easy AC current (IEC/EN 61000-4-5), power cable symmetrical	kV	1
High-energy pulses (surge) of easy DC current (IEC/EN 61 000-4-5, severity level 2), power cable symmetrical	kV	0.5
Line-conducted interference (IEC/EN 61000-4-6)	V	10
Dielectric strength		
Measurement of the clearance and creepage distance		EN 50178, UL508, CSA C22.2 No. 142
Dielectric strength		EN 50 178
Tools and cable cross-sections		
Conductor cross-sections		
Solid, minimum to maximum	mm ²	0.2 to 4
	AWG	22 to 12
Flexible with ferrule, minimum to maximum	mm^2	0.2 to 2.5
	AWG	22 to 12
Slot-head screwdriver, width	mm	3.5 × 0.8
Tightening torque	N/m	0.5

Power supply		
Rated voltage		
Rated value	V DC	24 (-15, +20)
Permissible range	V DC	20.4 to 28.8
Residual ripple	%	< 5
Input current at 24 V DC, typical	mA	200
Voltage dips, IEC/EN 61131-2	ms	10
Power dissipation at 24 V DC, typical	W	4.8
LEDs		
Module Status LED MS	Colour	Green/red
Network Status LED NS	Colour	Green/red
CANopen		
Device connection		8-pin RJ45 socket
Electrical isolation		Bus to power supply (basic) Bus and power supply to EASY basic unit (safe isolation)
Function		CANopen slave
Interface		CANopen (CAN)
Bus protocol		CANopen
Auto baud recognition max.	kbps	1000
Bus termination resistors		Separate installation at the bus possible
Bus addresses, accessible via easy basic unit with display or EASY-SOFT		1 to 127
Services		
Module inputs		All data S1 to S8 (easy600)
Module outputs		All data R1 to R16 (easy600)
Module control commands		Read/Write Time, day, summer/winter time All parameters of the easy functions

Dimensions

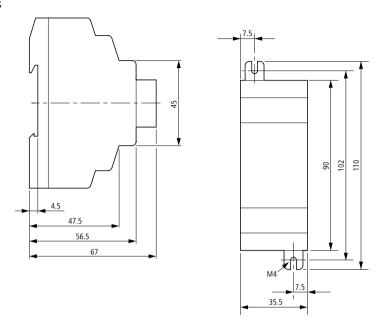


Figure 26: EASY221-CO dimensions in [mm]

Glossary

This glossary refers to the topics related to CANopen.

Access Type Access rights to an object.

Acknowledge Acknowledgement returned by the receiving station after

having received a signal.

Active metallic component Conductor or conductive component that is live when in

operation.

Address Number, for example, for identifying a memory location, a

system or a module within a network.

Addressing Assignment or setting of an address such as for a module in

a network.

Analog Value, such as voltage, that is infinitely variable and

proportional. Analog signals can acquire any value within

specific limits.

Arbitration A bus access mechanism used by CANopen.

Auto Baud Recognition Automatic recognition of the communication speed in a bus

system, when at least two stations communicate or one station transmits messages across the communication bus.

Automation device I/O controlling device that is interconnected to a system

process. Programmable controllers (PLCs) are a special

group of automation devices.

Basic CAN Concept for the implementation of a CAN controller. All

CAN messages are stored in an intermediate Tx and Rx buffer, that is, without causing high load on the host

controller that has to evaluate all messages.

Baud Unit for the data transfer rate. One baud is equivalent to the

transmission of one bit per second (bps).

Baud rate Unit of measure of the data transmission speed in bit/s.

Bidirectional Operation in both directions.

Bit Abbreviation for the term "binary digit". Represents the

smallest information unit of a binary system. Its significance

can be 1 or 0 (Yes/No decision).

Bit Stuffing Method used in CAN: After a sequence of five bits of the

same polarity, a "stuff bit" with reversed polarity is inserted

into the current message frame.

Bridge A bridge connects the CANopen network to the electronic

modules which represent the network slaves.

Bus System for data exchange, for example between the

CPU, memory and I/O. A bus can consist of several parallel segments, such as the data bus, address bus, control bus

and power supply bus.

Bus cycle time Time interval in which a master will serve all slaves or

stations in a bus system, i.e. writes their outputs and reads

their inputs.

Bus line Smallest unit connected to the bus. Consists of the PLC, a

module and a bus interface for the module.

Bus system The entirety of all units which communicate across a bus.

Bus terminating resistor Resistor at the beginning and end of a bus line for

preventing disturbance caused by signal reflections and for adapting bus cables. Bus terminating resistors must always

be the last unit at the end of a bus segment.

Byte A sequence of 8 bits

CAL CAN Application Layer. Standardised Layer 7 Protocol

according to CiA DS 201 to 207.

CAN Controller Area Network

CAN 2.0A 11-bit identifier
CAN 2.0B 29-bit identifier

CAN high-speed Up to 1 Mbps, normally 500 kbps

CAN low speed max. 250 kbps

CAN nodes In a CAN system, the network slaves are also referred to as

CAN nodes.

CAN Transceiver CAN controllers are interconnected to the bus medium by

means of an ISO/DIS 11898 interface. The structure of this interface is usually not formed by a discrete circuit, but

rather by a CAN Transceiver chip.

Glossary

CANopen Profile families based on CAL for high-speed data exchange.

CiA standardises the communication profile in CiA-DS-301.

Capacitive coupling Capacitive (electrical) coupling develops between two

conductors carrying different potentials. Typical

interference sources are, for example parallel signal cables,

contactor relays and static discharge.

Change of State In CAN: The producer automatically and immediately sends

its data when the position changes.

Chassis ground Entirety of all interconnected inactive equipment parts that

do not have any contact voltage, even in the event of a

fault.

CiA e. V./CAN in Automation. International CAN

manufacturer and user organisation.

CiA DS CAN in Automation Draft Standard, communication profile

CiA DSP CAN in Automation Draft Standard Proposal

CMS CAN Based Message Specification. One of the services of

the application layer in the CAN Reference Model.

COB Communication Object/CAN Message. A message in the

CAN network. All data to be sent via CAN are transported

in COBs.

COB-ID COB identifier. Unambiguous identification of a COB in the

entire CAN network. The COB-ID determines the bus

assignment priority of the COB.

Code Data transfer format

Coding element Two-part element for the unambiguous allocation of

electronic and basic module.

Command modules Command-capable modules are modules with an internal

memory that are capable of executing particular commands

(such as output substitute values).

Common potential Electrical interconnection of the reference potentials of the

control and load circuit of I/O modules.

Communication Profile Here: CANopen communication profile. Described in the

CiA Draft Standard CiA-DS-301.

Configuring Systematic arrangement of the I/O modules of a station.

Constant object. The value is read-only and does not

change during runtime. Example: Device Software Version.

CPU Abbreviation for "Central Processing Unit". Central unit for

data processing, which represents the core element of a

computer.

CRC Cyclic Redundancy Check: CAN data integrity check routine

with low residual error probability. Also used in other areas

of data transfer.

CSA certification Canadian certification (Canadian Standards Association)

CSMA Carrier Sense Multiple Access. Bus access routine used in

CAN. Each node can independently access the bus as soon

as the bus is free.

Data Frame CAN message frame used by a transmitter to broadcast

data to several receivers.

Data request telegram CAN remote transmission request frame, which a network

node transmits to another node.

DBT Distributor. One of the services of the application layer in

the CAN Reference Model. Used for the configuration of layers in the CAN Reference Model. The assignment of COB-

IDs to the COBs used by CMS represents a DBT task.

DBT master Special CAN node. Its task is to assign and manage the

COB-IDs in a CAL or CANopen network.

DBT slave All CAN nodes assigned a COB-ID by the DBT master.

Device Profile here: CANopen Device Profile. Described in CiA Draft

Standards CiA-DS-401 ff.

Device Profile here: CANopen Device Profile. Described in CiA Draft

Standards CiA-DS-401 ff.

Digital Represents a value that can acquire only definite states

within a finite set, e.g. a voltage. Mostly defined as "0" and

"1".

DIN Abbreviation for "Deutsches Institut für Normungen e. V.".

Download The download of configuration data, parameters or

programs to a CAN node.

Dual Code Natural binary code. Frequently used code for absolute

measurement systems.

Earthing strip Flexible conductor, mostly braided. Interconnects inactive

parts of equipment, e.g. the doors of a control panel and the

switch cabinet body.

EDS Electronic Data Sheet: File containing device-specific

parameter definitions (provided by the manufacturer of

CANopen or DeviceNet devices)

EEPROM Abbreviation for "Electrically Erasable Programmable Read-

only.

EIA Abbreviation for "Electronic Industries , USA.

Electrical equipment Comprises all equipment used for the generation,

conversion, transfer, distribution and application of electrical energy, e.g. power lines, cables, machines,

controllers.

EMC Abbreviation for "Electromagnetic Compatibility". The

ability of electrical equipment to function trouble-free within a particular environment without a negative effect

on the environment concerned.

EN Abbreviation for "European Norm".

Equipotential bonding Adaptation of the electrical level of the body of electrical

equipment and auxiliary conductive bodies by means of an

electrical connection.

ESD Abbreviation for "Electrostatic Discharge".

Fault Mode Determines the mode of reaction to errors. When this bit is

set for an output, this output will be set to the value

declared in its fault state parameter.

Field supply Voltage supply to field devices as well as signal voltage.

Fieldbus Data network on the sensor/actuator level. The fieldbus

interconnects the devices at field level. Characteristic feature of the fieldbus is their highly reliable transfer of

signals and real-time response.

Galvanic coupling A galvanic coupling occurs when two circuits use the same

cable. Typical sources of interference are, for example, starting motors, static discharges, clocked devices, and a potential difference between the housing of components

and the common power supply.

GND Abbreviation for "GROUND" (0 potential).

Ground In electrical engineering the name for conductive grounding

with an electrical potential at any point equal to zero. In the environment of grounding devices, the electrical ground potential may not equal zero. This is called a "reference

ground".

ground (verb) Represents the connection of an electrically conductive

component to the equipotential earth via a grounding

device.

Grounding device One or several components that have a direct and good

contact with the ground.

Guard Identifier Guarding protocol identifier used for node monitoring. The

NMT master here transmits an RTR to the monitored slaves.

requesting it to return its current status.

Guard Time Node monitoring time. Configurable time utilised for

monitoring the CAN nodes. After this Guard Time, the NMT master transmits an RTR frame including the Guard Identifier to the corresponding NMT slave requesting it to

return its current status data.

Guarding Node monitoring performed by means of the Guarding

protocol.

hexadecimal Number system with base 16. Counting from 0 to 9 and

then with the letters A, B, C, D, E and F.

I/O Abbreviation for "Input/Output".

Identifier Frame identifier. Standard CAN uses 11-bit, Extended CAN

29-bit identifiers.

Impedance Apparent resistance that a component or circuit of several

components has for an alternating current at a particular

frequency.

Inactive metal parts Conductive parts that cannot be touched and which are

insulated from active metal parts. They can, however, carry

voltage in the event of a fault.

Index The index (in arrays and records) and the subindex specify

an object address that conforms with CANopen standard. This address represents an index in the object dictionary. Only an index is output for simple variables. Array structures have subindexes which are appended comma-separated to the index. Example: [1800,01] = index 1800, subindex 1.

Inductive coupling Inductive (magnetic) coupling occurs between two current

carrying conductors. The magnetism produced by the currents induces an interference voltage. Typical

interference sources are, for example transformers, motors,

mains cables installed parallel and RF signal cables.

Inhibit Time Time interval during which a PDO may not be transmitted

again, in order to avoid excess load on the network.

Life Time Life Time/node monitoring time. Configurable time utilised

for monitoring the CAN nodes. The CAN node to be monitored expects at least one Guarding message within

this Life Time.

Lightning protection Represents all measures for preventing system damage due

to overvoltage caused by lightning strike.

LMT Layer Management. One of the services of the application

layer (CAL) in the CAN Reference Model. Described in the CiA Draft Standard CiA-DS-205. It contains the so-called layer-specific management functions. These include in particular the module name and ID as well as the timing parameters of the physical transmission layer, i.e. the baud

rate of the CAN nodes.

LMT master In the LMT model, this CAN node is assigned the task of

configuring the LMT parameters of the other CAN nodes.

LMT slave CAN node that that communicates in the LMT model with

the LMT master in a master/slave model.

Low impedance connection Connection with low alternating-current resistance.

LSB Abbreviation for "Least Significant Bit". Bit with the lowest

value.

Mapping All connection data, i.e. the assignment of network

variables to PDOs. A PDO can transmit one or multiple network variables (see CiA DS-301). The assignment of variables to PDOs is defined in the Mapping tables. These

can be addressed via the object dictionary.

Master Station or node in a bus system that controls

communication between the other stations of the bus

system.

Master-slave mode Operating mode in which a station or node of the system

acts as master that controls communication on the bus.

Mode Operating mode.

Module bus Represents the internal bus of an XI/ON station. Used by the

XI/ON modules for communication with the gateway.

Independent of the fieldbus.

MSB Abbreviation for "Most Significant Bit". Bit with the most

significant value.

Multimaster Mode Operating mode in which all stations or nodes of a system

have equal rights for communicating on the bus.

Namur Abbreviation for "Normen-Arbeitsgemeinschaft für Mess-

und Regeltechnik" (Standards Committee for Measurement and Control Technology). NAMUR proximity switches represent a special category of 2-wire proximity switches. They are highly resistant to interference and reliable due to their special construction, e.g. low internal resistance, few

components and short design.

NMT Network Management. One of the services of the

application layer in the CAN Reference Model. Used in a CAN network for initialisation, configuration and error

handling routines.

Nodes Network slaves.

Noise emission (EMC)

Testing procedure to EN 61000-6-4

Noise immunity (EMC)

Testing procedure to EN 61000-6-2

NV memory Non-volatile electronic memory for electronic counters and

for data backup during power loss.

Object Dictionary Object dictionary. The object dictionary contains all objects

accessible via the network in a defined sequence. These

objects are accessed via a 16-bit index.

Operational Active status of a CANopen node. In this state the node can

transmit and receive PDOs, depending on the type and configuration. SDO communication is still possible.

Overhead System management time required in the system in each

transmission cycle.

Parameter assignment Definition of parameters for individual bus slaves or their

modules in the configuration software of the DeviceNet

master.

PDO Process Data Object. Object for the data exchange between

different CAN nodes.

PLC Abbreviation for Programmable Logic Controller.

Polling mode A slave returns data only after it has received an RTR from

the bus master.

Potential-free Galvanic isolation between the reference potentials of the

control and load circuit of I/O modules.

Pre-operational Status of a CANopen node such as EASY221-CO after

power on and automatic initialisation. The node can be

addressed by means of SDO, and can be set to

"Operational" from this state.

Priorities The CAN frame identifiers also determine the priorities for

bus access. This allows fast bus access according to the

significance of messages.

Protected against short-circuit Property of electrical equipment. Short-circuit-proof

equipment has the ability to withstand the thermal and dynamic loads that may occur at the location of installation

on account of a short-circuit.

Protective conductor A conductor required for the protection against dangerous

currents, designated by the letters PE (abbreviation of

"Protective Earth").

Radiated coupling Radiated coupling occurs when an electromagnetic wave

makes contact with a conductor structure. The impact of the wave induces currents and voltages. Typical interference sources are, for example ignition circuits (spark plugs, commutators of electrical motors) and transmitters (e.g. radio-operated devices), which are operated near the

corresponding conductor structure.

Reference ground Ground potential in the area of grounding devices. Unlike

"ground", which always has zero potential, it may have any

potential except zero.

Reference potential Represents a reference point for measuring and/or

visualising the voltage of any connected electrical circuits.

Repeater Amplifier for signals transferred across a bus.

Response time In a bus system the time interval between the sending of a

read job and the receipt of the response. Within an input module, it represents the time interval between the signal change at an input and its output to the bus system.

RO Read Only. Object assigned the read only attribute.

RW Read/Write. Object assigned read/write attributes.

RWR Read/Write/Read. Object assigned read/write attributes. It

can only be read, however when data is transferred via

PDOs (as network variable).

RWW Read/Write/Write. Object assigned read/write attributes. It

can only be written, however when data is transferred via PDOs (as network variable). This corresponds, for example with a digital output that is normally write accessed, but also allows (via SDO) read back of the last entered value.

SDO Service Data Object. Object for peer to peer communication

with access to the Object Dictionary of a CAN node.

SDO Manager CANopen manager/master that can access all devices via

SDO and of which several may exist in complex or large

plants (e.g. for distributed tasks).

Serial Describes an information transfer technique. Data is

transferred in a bit-stream across the cables.

Shield Term that describes the conductive covering of cables,

cubicles and cabinets.

Shielding Refers to all measures and equipment used to connect

system parts to the shield.

Slave Station in a bus system that is subordinate to the master.

Station Function unit or module, consisting of several elements.

Subindex See Index.

Sync The SYNC object is a frame a station broadcasts

periodically. Can be used to transfer device data at defined time intervals. PDOs that should respond to these frames are assigned the synchronous Transmission Type attribute

(see Transmission Type).

Topology Geometric structure of a network or circuit arrangement.

Transmission Type Transmission characteristics of a PDO.

UART Abbreviation for "Universal Asynchronous Receiver/

Transmitter". A "UART" is a logic circuit used for

converting an asynchronous serial data sequence into a bit-

parallel data sequence or vice versa.

Unidirectional Working in one direction.

WO Write Only. Object with write access only.

Index

	7-day time switch	
	easy700	154, 170
	easy800/MFD	
_	A 1.1	
Α	Address range	26
	Address setting	
	On the basic unit	
	With EASY-SOFT	
	With special configuration tools	28
	ALT button, read status	94
	Analog comparators	
	easy600, write actual values	103
	easy700	
	easy700, read status	
	easy800/MFD	
	Analog inputs	201
	easy600, read status	05
	easy700, read status	
	easy800/MFD, read status	183
	Analog output	
	easy800/MFD, read status	195
	Arithmetic function block	
	easy800/MFD	206

В	Baud rate recognition, automatic	24
	Bit array	132
	Block compare	200
	easy800/MFD	208
	Block transfer	24.0
	easy800/MFD	210
	Boolean operation	242
	easy800/MFD	
	Bus terminating resistors	22
C	CANopen	
	Pin assignment	
	Commissioning	25
	Communication objects	
	Communication parameters	
	Communication status	43
	Comparators	
	easy800/MFD	222
	Connecting	
	CANopen	
	EASY221-CO to basic unit	
	Power supply	
	Connecting the basic unit	
	Connecting the power supply	20
	Control commands	
	easy600	
	easy700	
	easy800	175
	Counter relays	
	easy600, read actual value	106
	easy600, read setpoint	
	easy600, write setpoint	
	easy700	159
	Counters	
	easy700, read status	
	easy800/MFD	
	Cycle time	
	Cyclic data exchange	77

D	Data exchange, PDO	77
	Data function block	
	easy800/MFD	
	Data types	
	DEL button, read status	94
	Delay time, random value	114
	Device profile	44
	Diagnostics, local	
	easy800/MFD, image data	185
	Diagnostics, remote stations	
	easyMFD, image data	185
	Digital inputs	
	easy600, read status	92
	easy700, read status	
	easy800/MFD, read status	
	Digital outputs	107
	easy600, read status	99
	easy700, read status	
	Digital outputs, local and network stations	
	easy800/MFD, read status	
	Dimensions	
	Direct data exchange	
	Direct data exchange	//
	50.0 (I	
E	EDS file	
	Electrical isolation	
	EMC	
	Emergency	
	Emergency object	
	Emergency protocol	75
	Error codes, via EASY-LINK	
	easy700	173
	easy800/MFD	
	Error LED	
	Error message, EASY221-CO on network	
	Error messages	
	ESC button, read status	
	Event Timed PDOs	

_	Г	
F	Frequency counters	246
	easy800/MFD	216
	Function blocks, overview	
	easy600	
	easy700	
	easy800/MFD	203
Н	Hardware requirements	17
	High-speed counter	
	easy800/MFD	218
	Hour	
	easy600	88
	Read	
	Write	
I	Image data	
	General information	91
	Overview easy700	134
	Overview of easy800/MFD	182
	Overview, easy600	91
	Improper use	
	Incremental encoder counters	
	easy800/MFD	220
	Inhibit Time	
	Initial power up	
	Initialisation	
	Input data, definition	
	Inputs of EASY-LINK	
	easy700, read status	149
	easy800/MFD, read status	198
	Inputs, network stations	
	easy800/MFD, read status	189
	Invalid operating mode1	73, 262
	Invalid telegram1	, 262 73, 262

L	Layer Setting Service	44
	LEDs	29
	Local analog output	
	easy800/MFD, read status	195
	Local inputs	
	easy700, read status	138
	easy800/MFD, read status	
	Local outputs	
	easy700, read status	148
M	Manufacturer-specific objects	54
	Marker relays	
	easy600, read status	99
	Markers	
	easy600, read status	99
	easy800/MFD, read status	
	Master reset	
	easy700	153
	easy800/MFD	
	Minute	
	easy600	89
	Read	
	Write	
	Multiplexed PDOs	
	Network management, CANopen	
N		
	NMT service	
	Node Guarding	
	Node monitoring	42
	Numerical converter	
	easy800/MFD	246

)	Object dictionary	45
	OFF time	
	Read	123
	Write	127
	OK button, read status	94
	ON time	
	Read	
	Write	127
	Operating buttons	
	easy600, read status	92
	Operating hours counter	
	easy800/MFD	248
	Operating hours counters	
	easy700	162
	Operating mode	
	Read	82
	Write	78
	Operating mode, invalid	.173, 262
	Operating system version requirements	17
	Operational	39
	Output data, definition	77
	Outputs of EASY-LINK	
	easy700, read status	149
	easy800/MFD, read status	198
	Outputs S1 to S8, read status	82
	Outputs, local and network stations	
	easy800/MFD, read status	196
)	P buttons	
	easy600, read status	92
	easy700, read status	
	easy800, read status	
	P1 to P4 button inputs	
	easy600	92
	PDO	
	PDO mapping	
	PDO protocol	
	PID controllers	
	easy800/MFD	229

	Pin assignment, CANopen Pre-operational Prepared Process data objects Protocols, CANopen Pulse width modulation easy800/MFD	39 4(34
R	Read/write date easy6001 Read/write time	
	easy600	
	easy7001	30, 177
	Receive data, network stations easy800/MFD	22
	easy800/MFD, read status	٬۰۰۰۰ کی۔۔۔۔۔ ۲۵۲
	Receive network	200
	easy800/MFD	234
	Receive PDO	
	Resetting, easy/MFD inputs/outputs	
	Response time of the basic unit	
	Restoring, object dictionary entries	
	RUN LED	
S	Saving, object dictionary entriesSDO	43
	Control commands for easy600	۵ı
	Control commands for easy700	129
	Control commands for easy800	
	Send network data	
	easy800/MFD	250
	Service data objects	
	Set cycle time	
	easy800/MFD	25
	Setting the node ID	
	Setting the slave address	20
	Setting, easy/MFD inputs/outputs	
	Satting/recatting inputs R1 to R8	90

	Setup of the unit	15
	Signal smoothing filter	
	easy800/MFD	232
	State	
	Reading outputs S1 to S8	82
	Writing inputs R1 to R8	80
	Stations, read input status	189
	Status LED	
	Summer time	
	easy600	87
	easy700	
	easy800/MFD	
	Switching rule	
	Switching times	
	Read	123
	Write	
	Synchronisation object	
	Synchronize clock	
		25.4
	easy800/MFD	
	Synchronous transfer	
	System overview, CANopen	
	System services	3/
	Telegram, invalid	173 262
•	Text display	175, 202
	easy600, read status	gg
	Text function block	
	easy700, read status	137
	Text markers	
	Text output function block	101
	easy800/MFD	224
		224
	Threshold value comparator	125
	easy700, read status	135
	Threshold value switch	
	easy700	
	Time change (easy800/MFD)	
	Time stamp	
	Time Stamp object	37

	Time switch	
	easy600, read actual value	120
	easy600, write setpoints	
	Timing relays	
	easy600, read actual value	
	easy600, write parameters	
	easy700	
	easy700, read status	
	easy800/MFD	
	Transfer rates	
	Transmission types of PDOs	35
	Transmit data, network stations	
	easy800/MFD	
	easy800/MFD, read status	
	Transmit PDO	34
V	Value limitation	
	easy800/MFD	260
	Value scaling	
	easy800/MFD	242
	Version history, easy800	
	<i>,</i>	
W	Weekday	
	easy600	88
	Winter time	
	easy600	87
	easy700	
	easy800/MFD	
	Wiring, EMC compliant	
	Write comparison value (analog value compa	
	104	
Υ	Year time switch	
	easy700	167
	easy700, read status	152
	easy800/MFD	239